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Consider a data set
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. (1)

When
p > n or even p≫ n,

the data are high-dimensional. A formal relationship between Y and X to be
considered is through the linear model

Y = Xβ0 + ǫ, (2)

where β ∈ R
p is the parameter vector, ǫ ∈ R

n is the error vector of i.i.d. elements
assumed to follow certain distribution with E(ǫ) = 0. The most frequently adopted
route to tackle the problem of high-dimensionality is regularization by which a
penalty term, pen(β), is added to the least-squares criterion. The regularized least-
squares objective function is

min
β∈Rp

[

‖Y −Xβ‖
2
+ λpen(β)

]

, (3)

where the tuning parameter λ controls the intensity of penalization. The ridge
estimator uses L2 norm as the penalty. LASSO combines least-squares L2 loss
with L1 penalty. There now exist many variants of original LASSO with different
penalty terms. In literature the basic idea is to set a condition by which not all
covariates are needed, although it is unknown which of them can be deleted. The
true parameter β0 = (β1, . . . , βp)

T
satisfies sparsity condition when

‖β0‖ =

p
∑

j=1

|βj | = o

(
√

n

log(p)

)

. (4)

In the talk the least squares estimator and different penalized estimators are com-
pared under non-sparsity.
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