Discrete approximation theorems for statistics related to Bernoulli variables

Vydas Čekanavičius

Vilnius University, Lithuania, vydas.cekanavicius@mif.vu.lt

Keywords: total variation, m-dependent variables, 2-runs, compound Poisson approximation

We estimate the accuracy of discrete approximations to the distributions of 2-runs and $N(k_1, k_2)$ statistic. Let η_i , (i = 1, 2, ...) be independent Bernoulli variables, $\xi_j = \eta_j \eta_{j+1}$. The sum $S = \xi_1 + \cdots + \xi_n$ is called 2-runs statistic. Let $Y_j = (1 - \eta_{j-m+1}) \cdots (1 - \eta_{j-k_1}) \eta_{j-k_2} \cdots \eta_{j-1} \eta_j$. Then $Z = Y_m + Y_{m+1} + \cdots + Y_n$ is called $N(k_1, k_2)$ statistics. It is proved that for two-parametric approximations the accuracy is at least of the order $O(n^{-1/2})$. Our results are closely related to the results of [1, 2].

References

- [1] Vellaisamy, P. (2004). Poisson approximation for (k_1, k_2) events via the Stein-Chen method. Adv. Appl. Prob. 41, 1081-1092.
- [2] Wang, X. and Xia, A. (2008). On negative binomial approximation to k-runs. J. Appl. Prob. 45, 456-471.