On a family of robust estimators for autocorrelation coefficients under outliers

Valeriy Voloshko¹ and Yuriy Kharin²

¹Research Institute for Applied Problems of Mathematics and Informatics, Belarus, valeravoloshko@yandex.ru ²Belarusian State University, Minsk, Belarus, kharin@bsu.by

Keywords: robustness, outlier, autocorrelation coefficient, time series

We consider observations $\{y_t\}$ derived from Gaussian stationary time series $\{x_t\}$, distorted by the so-called replacement outliers [3]. The robust ψ -estimate $\hat{\theta}_{\tau}$ for autocorrelation coefficient $\theta_{\tau} = \mathbb{CORR}\{x_t, x_{t+\tau}\}$ of undistorted (hidden) time series $\{x_t\}$ is computed from observed distorted time series $\{y_t\}$ by the formula [1]:

$$\hat{\theta}_{\tau} ::= f_{\psi}^{-1} \left(\frac{(1-\varepsilon)^{-2}}{T-\tau} \sum_{t=1}^{T-\tau} \psi\left(\frac{y_t}{y_{t+\tau}}\right) \right), \ 0 < \tau < T, \tag{1}$$

where $\psi : \mathbb{R} \to \mathbb{R}$ is an odd bounded function, $f_{\psi}(\theta) ::= \mathbb{E}\psi(\zeta)$, ζ is the Cauchy distributed random variable with law $\mathcal{C}(\theta, \sqrt{1-\theta^2})$, $0 < \varepsilon \ll 1$ is the probability of a replacement outlier presence in $\{y_t\}_{t=1}^T$.

Under several assumptions on function ψ and asymptotical behavior of autocorrelation θ_{τ} at $\tau \to \infty$ the ψ -estimator (1) is shown to be consistent and asymptotically Gaussian [1, 2]. Some examples of $\psi(\cdot)$ generated ψ -estimators in the family (1) are given. Optimal function $\psi_*(\cdot)$ that minimizes the functional (an approximation for the mean squared error for the ψ -estimator) is found. Numerical comparison of ψ -estimator (1) w.r.t. the robust Huber estimator [4] is made based on real and simulated data.

References

- Kharin, Yu. and Voloshko, V. (2011). Robust estimation of AR coefficients under simultaneously influencing outliers and missing values. *Journal of Statistical Planning and Inference* 141, 3276–3288.
- [2] Kharin, Yu. (2013). Robustness in Statistical Forecasting. Springer, Heidelberg-Dordrecht-New York-London.
- [3] Maronna, R.A., Martin, R.D., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York.
- [4] Huber, P.J. (1981). Robust Statistics. Wiley, New York.