The existence of infinite Viterbi alignment for PMC models

Joonas Sova and Jüri Lember

University of Tartu, Estonia, joonas.sova@ut.ee, juri.lember@ut.ee

Keywords: pairwise Markov chain, hidden Markov chain, Viterbi alignment, Viterbi algorithm, Viterbi training, maximum a posteriori path

We consider a two-dimensional homogeneous Markov chain $((X_1, Y_1), (X_2, Y_2), ...)$, where random variables X_i (observations) are taking values from some set \mathcal{X} and random variables Y_i (unobserved or "hidden" states) are taking values from state space $\mathcal{Y} = \{1, ..., |\mathcal{Y}|\}$. Following Pieczynski [1] we call this model a pairwise Markov chain (PMC). The name reflects the fact that conditionally, given the marginal process $X = (X_1, X_2, ...)$, the process $Y = (Y_1, Y_2, ...)$ is a Markov chain, and conditionally, given Y, X is a Markov chain. In general though, neither Xnor Y are necessarily Markov chains. PMC is a natural generalization of hidden Markov model (HMM). In particular, just like in case of HMM, given a realization $x_{1:n} = (x_1, \ldots, x_n)$ of $X_{1:n} = (X_1, \ldots, X_n)$, the Viterbi algorithm can be employed to find the maximum a posteriori (MAP) estimate $(v_1(x_{1:n}), \ldots, v_n(x_{1:n}))$ of $Y_{1:n}$. This estimate is also called the Viterbi alignment or Viterbi path. We prove a theorem which gives sufficient conditions for extending the Viterbi alignment to infinity. We further provide examples where we apply this theorem to specific models.

References

Pieczynski, W. (2003). Pairwise Markov chains. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 25, 634–639.