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Let y = (y1, . . . , yn) be a random vector having the multinomial distribution

y ∼ Multinomialn(N,p),

where p = (p1, . . . , pn) is a vector of positive probabilities.
Define (logarithmic) likelihood ratio statistic

G2
n(y;N,p) :=

n
∑

i=1

yi log

(

yi

piN

)

.

Assuming that pmin := mini=1,...,n pi ≥ δ0 > 0, Hoeffding [1] proved that

P{G2
n(y;N,p) ≥ x} = O

(

x(n−3)/2e−x
)

, N → ∞,

uniformly in x ∈ [c1, c2N ] for arbitrary positive constants c1 and c2. Kallenberg
[2] obtained upper and lower bounds for the tail probabilities of G2

n(y;N,p) in the
case where pmin → 0 and n → ∞ not too fast. However, the upper bound exceeds
the corresponding lower bound by a factor of order

√
x.

The problem is to obtain, for the tail probabilities of G2
n(y;N,p), an exact (up

to a constant factor) upper bound valid for all positive x.
For n = 2, the universal and exact up to a factor of 2 upper bound for the tail

probabilities follows from the paper by Zubkov and Serov [3]. The generalization of
this bound to the case n > 2 is discussed.
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