About nearly critical branching processes with dependent immigration

Ya. M. Khusanbayev¹, G. Rakhimov² and X. Q. Jumaqulov¹

¹Institute of Mathematics, Uzbekistan, yakubjank@mail.ru, xurshid81@gmail.com ²Academic Lyceum under Architecture and Building Institute, Uzbekistan, gairat48@gmail.com

Keywords: branching process, immigration, stationary process

Let $\{\xi_{k,j}, k, j \in N\}$ and $\{\varepsilon_k, k \in N\}$ be independent collections of independent dent, nonnegative, integer-valued, identically distributed random variables. We define a sequence of random variables $\{X_k, k \in N_0\}$ by the following recurrence relations:

$$X_0 = 0, \ X_k = \sum_{j=1}^{X_{k-1}} \xi_{k,j} + \varepsilon_k, \ k \in N.$$

The sequence $\{X_k, k \in N_0\}$ is called a branching process with immigration.

Let for each $n \in N \left\{ \xi_{k,j}^{(n)}, k, j \in N \right\}$ be independent, nonnegative integervalued random variables and $\{\tau_k^{(n)}, k \in N\}$ be stationary process in a broad sense, the random variables $\tau_k^{(n)}$ taking nonnegative integer values. Suppose that for each $n \in N$ a set of random variables $\left\{\xi_{k,j}^{(n)}, k, j \in N\right\}$ and the process $\left\{\tau_k^{(n)}, k \in N\right\}$ are independent. We consider a sequence of branching processes with immigration $\left\{Z_k^{(n)}, k \in N_0\right\}, n \in N$, following recurrence relations

$$Z_0^{(n)} = 0, \ Z_k^{(n)} = \sum_{j=1}^{Z_{k-1}^{(n)}} \xi_{k,j}^{(n)} + \tau_k^{(n)}, \ k, \ n \in N.$$

We define a random step function $Z_n(t)$, $n \in N$, by setting $Z_n(t) = Z_{[nt]}^{(n)}$, $t \ge 0$, where [a] is the integer part of a. Assume that

$$m_n = E\xi_{1,1}^{(n)}, \ \sigma_n^2 = var\,\xi_{1,1}^{(n)}, \ \gamma_n = E\tau_1^{(n)}, \ \delta_n^2 = var\,\tau_1^{(n)}, \ \rho_n(k) = cov\left(\tau_1^{(n)}, \ \tau_{k+1}^{(n)}\right)$$

are finite for all $n \in N$.

Theorem. Suppose that the following conditions are satisfied:

A. $m_n = 1 + \alpha n^{-1} + o(n^{-1})$ as $n \to \infty$ for any $\alpha \in R$;

- B. $\sigma_n^2 \to 0$ as $n \to \infty$; C. $\gamma_n \to \gamma \ge 0, \ \delta_n^2 \to \delta^2 \ge 0$ as $n \to \infty$; D. $\frac{1}{n} \sum_{k=1}^n |\rho_n(k)| \to 0$ as $n \to \infty$.

Then the following weak convergence takes place in the Skorokhod space $D[0, \infty)$

as $n \to \infty$: $n^{-1}Z_n \to \mu$, where μ is defined by the relation $\mu(t) = \gamma \int_0^t e^{\alpha u} du$. The case of independent, nonnegative, integer-valued, identically distributed random variables $\left\{\tau_k^{(n)}, \ k \in N\right\}$ was studied in [1].

References

[1] Ispany, M., Pap, G., Van Zuijlen M.C.A. (2005). Fluctuation limits of branching processes with immigration and estimation of the means. Adv. Appl. Probab. 37, 523 - 538.