Statistical analysis of high-order Markov dependencies

Yuriy Kharin and Michail Maltsew

Belarusian State University, Minsk, Belarus, kharin@bsu.by, maltsew@bsu.by

Keywords: high-order Markov chain, parsimonious model, estimator, test

A universal model for real-world processes with discrete time t, finite state space $A = \{0, 1, \ldots, N-1\}$ and high-order dependence $s \gg 1$ (in genetics, computer networks, financial markets, meteorology and other fields) is the order s homogeneous Markov chain $(MC(s)) x_t$ on some probability space $(\Omega, \mathcal{F}, \mathbf{P})$ determined by an (s + 1)-dimensional matrix of one-step transition probabilities $P = (p_{i_1,\ldots,i_{s+1}})$, $p_{i_1,\ldots,i_{s+1}} = \mathbf{P}\{x_{t+1} = i_{s+1} | x_t = i_s, \ldots, x_{t-s+1} = i_1\}$. Unfortunately, the number of independent parameters for the MC(s) increases exponentially w.r.t. the order s: $D_{MC(s)} = N^s(N-1)$, and we need data of huge size to identify this model.

To avoid this "curse of dimensionality" we propose to use parsimonious (or "small-parametric" [1]) models for MC(s) that are determined by small number of parameters $d \ll D_{MC(s)}$. Three known examples of parsimonious models: the Jacobs-Lewis model with $d_{JL} = N + s - 1$ parameters; the MTD-model proposed by A. Raftery with $d_{MTD} = N^2 + s - 1$ parameters; the variable length Markov chain model proposed by P. Buhlmann.

We give short analysis of previous results and propose two new parsimonious models of MC(s).

Markov chain of order s with r partial connections MC(s,r) is determined by the following small-parametric form of P:

$$p_{i_1,\ldots,i_{s+1}} = q_{i_{m_1},\ldots,i_{m_r},i_{s+1}}, \ i_1,\ldots,i_{s+1} \in A,$$

where $r \in \{1, \ldots, s\}$ is the number of connections; $M_r = (m_1, \ldots, m_r)$ is the integervalued vector with r ordered components $1 = m_1 < m_2 < \cdots < m_r \leq s$, called the template of connections; $Q = (q_{i_1,\ldots,i_r,i_{r+1}})$ is a stochastic (r+1)-dimensional matrix. We need $N^r(N-1)$ parameters to completely determine MC(s,r).

Markov chain of conditional order MCCO(s, L) is determined by the equation:

$$p_{i_1,\dots,i_{s+1}} = \sum_{k=0}^{N^L - 1} I\{\langle i_{s-L+1},\dots,i_s \rangle = k\} q_{i_{s-s_k+1},i_{s+1}}^{(m_k)},$$

where I{C} is the indicator of event C; $\langle i_{s-L+1}, \ldots, i_s \rangle = \sum_{\substack{k=s-L+1 \\ k=1, l+1 \\ k=1, l+1 \\ k=1, l+1 \\ k=s, max} N^{k-s+L-1} i_k$

is the numeric representation of the sequence (i_{s-L+1}, \ldots, i_s) , called the base memory fragment of length $L \in \{1, \ldots, s-1\}$; $Q^{(1)}, \ldots, Q^{(M)}$ are $M \in \{1, \ldots, N^L\}$ different stochastic square matrices of the order N: $Q^{(m_k)} = (q_{i,j}^{(m_k)}), 1 \le m_k \le M$; the value $s_k \in \{L+1, \ldots, s\}$ is called the conditional order. The transition matrix for the MCCO(s, L) is determined by $2(N^L + 1) + MN(N - 1)$ parameters.

We present theoretical results on probabilistic properties and statistical inferences for these models and results of computer experiments on simulated and real data.

References

 Kharin, Yu. (2013). Robustness in Statistical Forecasting. Springer, Heidelberg/Dordrecht/New York/London.