Statistical analysis of high-order Markov dependencies

Yuriy Kharin and Michail Maltsew
Belarusian State University, Minsk, Belarus, kharin@bsu.by, maltsew@bsu.by

Keywords: high-order Markov chain, parsimonious model, estimator, test
A universal model for real-world processes with discrete time t, finite state space $A=\{0,1, \ldots, N-1\}$ and high-order dependence $s \gg 1$ (in genetics, computer networks, financial markets, meteorology and other fields) is the order s homogeneous Markov chain $(M C(s)) x_{t}$ on some probability space $(\Omega, \mathcal{F}, \mathrm{P})$ determined by an $(s+1)$-dimensional matrix of one-step transition probabilities $P=\left(p_{i_{1}, \ldots, i_{s+1}}\right)$, $p_{i_{1}, \ldots, i_{s+1}}=\mathbf{P}\left\{x_{t+1}=i_{s+1} \mid x_{t}=i_{s}, \ldots, x_{t-s+1}=i_{1}\right\}$. Unfortunately, the number of independent parameters for the $M C(s)$ increases exponentially w.r.t. the order s : $D_{M C(s)}=N^{s}(N-1)$, and we need data of huge size to identify this model.

To avoid this "curse of dimensionality" we propose to use parsimonious (or "small-parametric" [1]) models for $M C(s)$ that are determined by small number of parameters $d \ll D_{M C(s)}$. Three known examples of parsimonious models: the Jacobs-Lewis model with $d_{J L}=N+s-1$ parameters; the MTD-model proposed by A. Raftery with $d_{M T D}=N^{2}+s-1$ parameters; the variable length Markov chain model proposed by P. Buhlmann.

We give short analysis of previous results and propose two new parsimonious models of $M C(s)$.

Markov chain of order s with r partial connections $M C(s, r)$ is determined by the following small-parametric form of P :

$$
p_{i_{1}, \ldots, i_{s+1}}=q_{i_{m_{1}}, \ldots, i_{m_{r}}, i_{s+1}}, i_{1}, \ldots, i_{s+1} \in A
$$

where $r \in\{1, \ldots, s\}$ is the number of connections; $M_{r}=\left(m_{1}, \ldots, m_{r}\right)$ is the integervalued vector with r ordered components $1=m_{1}<m_{2}<\cdots<m_{r} \leq s$, called the template of connections; $Q=\left(q_{i_{1}, \ldots, i_{r}, i_{r+1}}\right)$ is a stochastic $(r+1)$-dimensional matrix. We need $N^{r}(N-1)$ parameters to completely determine $M C(s, r)$.

Markov chain of conditional order $\operatorname{MCCO}(s, L)$ is determined by the equation:

$$
p_{i_{1}, \ldots, i_{s+1}}=\sum_{k=0}^{N^{L}-1} \mathrm{I}\left\{<i_{s-L+1}, \ldots, i_{s}>=k\right\} q_{i_{s-s_{k}+1}, i_{s+1}}^{\left(m_{k}\right)}
$$

where $\mathrm{I}\{C\}$ is the indicator of event $\left.C ;<i_{s-L+1}, \ldots, i_{s}\right\rangle=\sum_{k=s-L+1}^{s} N^{k-s+L-1} i_{k}$ is the numeric representation of the sequence $\left(i_{s-L+1}, \ldots, i_{s}\right)$, called the base memory fragment of length $L \in\{1, \ldots, s-1\} ; Q^{(1)}, \ldots, Q^{(M)}$ are $M \in\left\{1, \ldots, N^{L}\right\}$ different stochastic square matrices of the order $N: Q^{\left(m_{k}\right)}=\left(q_{i, j}^{\left(m_{k}\right)}\right), 1 \leq m_{k} \leq M$; the value $s_{k} \in\{L+1, \ldots, s\}$ is called the conditional order. The transition matrix for the $\operatorname{MCCO}(s, L)$ is determined by $2\left(N^{L}+1\right)+M N(N-1)$ parameters.

We present theoretical results on probabilistic properties and statistical inferences for these models and results of computer experiments on simulated and real data.

References

[1] Kharin, Yu. (2013). Robustness in Statistical Forecasting. Springer, Heidelberg/Dordrecht/New York/London.

