Markov-modulated multivariate linear regression

Alexander Andronov

Transport and Telecommunication Institute, Riga, Latvia, lora@mailbox.riga.lv

Keywords: random environment, Markov chain, estimators

We consider the case, where a process, described by multivariate linear regression, operates in a random environment. The last is presented as a continuoustime homogeneous irreducible Markov chain $J(t), t \ge 0$, with finite state set $N = \{1, 2, ..., k\}$ [1]. Let $\lambda_{i,j}$ be the known transition rate from state *i* to state $j(\lambda_{j,j} = 0)$.

The following notations will be used for the η -th observation $(\eta = 1, ..., n)$: $x_{(\eta)} = (x_{\eta,1}, ..., x_{\eta,q})$ is the q-row vector of known independent variables; $Y_{(\eta)}(t) = (Y_{\eta,1}(t), ..., Y_{\eta,p}(t))$ is the p-row vector of observed dependent variables; $e_{(\eta)} = (e_{\eta,1}, ..., e_{\eta,p})$ is the p-row vector of random variables, $e_{(\eta)} \in N_p(0, I)$; t_{η} is the observation time; $T_{\eta,\mu}$ is an unobserved sojourn time in the state $\mu \in N(T_{\eta,1} + ... + T_{\eta,k} = t_{\eta})$. Further the $q \times p$ -matrix B(j) of regression parameters for the j-th state of the random environment (j = 1, ..., k) and the symmetric square root $\sum^{1/2}$ of the positive definite matrix \sum are unknown and identical for all observations.

positive definite matrix \sum are unknown and identical for all observations. Thus, if $T_{(\eta)} = (T_{\eta,1}, ..., T_{\eta,p})$ and $\tilde{B} = (B(1)^T, ..., B(k)^T)^T$, then we have the model for the η -th observation:

$$Y_{(\eta)}(t_{\eta}) = (T_{(\eta)} \otimes x_{(\eta)})\tilde{B} + \sqrt{t_{\eta}}e_{(\eta)}, \quad \eta = 1, ..., n.$$

We consider estimators of B and \sum for the following given data on n observations: the vectors $Y_{(\eta)}$ and $x_{(\eta)}$ of dependent and independent variables; observation time t_{η} ; the initial $i_{\eta} = J(0)$ and finite $j_{\eta} = J(t_{\eta})$ states of Markov chain. It is supposed that all observations are independent.

Obtained results generalize the previous results of the author for the multiple linear regression [2].

References

- Pacheco, A., Tang, L.C., Prabhu, N.U. (2009). Markov-Modulated Processes & Semiregenerative Phenomena. World Scientific, New Jersey, London.
- [2] Andronov, A. (2012). Parameter statistical estimates of Markov-modulated linear regression. In: Statistical Methods of Parameter Estimation and Hypothesis Testing 24, Perm State University, Perm, Russia, 163–180 (in Russian).