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Dear Participants,

Welcome to Tartu!

The first Tartu Conference on Multivariate Statistics was held 34 years ago, 1977. We
are happy that today we have among active participants of the IX Conference two Invited
Speakers of the First Conference, Yuri Belyaev and Ene-Margit Tiit. The IX Tartu Con-
ference on Multivariate Statistics is held jointly with the XX International Workshop on
Matrices and Statistics under auspices of the Bernoulli Society for Mathematical Statistics
and Probability. In the end of this volume you can find short retrospective overviews of
these two conference series.

The talks will be given within four days, June 27-30, 2011. They include two Keynote
Lectures delivered by Professor Ingram Olkin and Samuel Kotz Memorial Lecture given by
Professor N. Balakrishnan. There will be a Special Section dedicated to the 75-th jubilee
of Professor Muni. S. Srivastava. The talks cover wide range of areas from probability
theory and theoretical developments of mathematical statististics and distribution theory
to applications of multivariate analysis in different areas: finance, insurance, economics,
genetics, demography etc.

This volume contains the abstracts of the papers to be presented at the Conference in
alphabetic order, following Estonian alphabet. Style of the abstracts has been kept un-
changed during editing. Only some misprints have been corrected. Organizers are grateful
to all the authors for their cooperation.

Programme Committee wishes all of you fruitful ideas and enjoyable time in Tartu.

Tõnu Kollo
Vice-Chair of the Programme Committee



Block-wise permutation tests
for correlated multivariate imaging data

Daniela Adolf and Siegfried Kropf

Department of Biometrics and Medical Informatics,
Otto-von-Guericke University Magdeburg, Germany,

email: daniela.adolf@med.ovgu.de, siegfried.kropf@med.ovgu.de

Keywords: block-wise permutation, correlated sample elements, separated multivariate
GLM.

In view of functional magnetic resonance imaging data, that is high-dimensional and
correlated in time and space, we consider a multivariate general linear model (GLM) for
a fMRI session with one person

Y = XB + E, E ∼ Nn×p(0,P ⊗Σ)

The data matrix Y contains n measurements (successive fMRI scans) over p variables
whereas p � n. In general the null hypothesis is H0 : C ′B = 0 with C being an s ×m-
dimensional contrast weight matrix. Here contrary to the classical multivariate GLM, the
sample vectors are correlated and P is supposed to be a first-order autoregressive pro-
cess. To analyze these data non-parametrically, we use a block-wise permutation method
including a random shift in order to count for the temporal correlation.

Furthermore, we want to be able to test any null hypothesis on the parameter estimates
via this special permutation method. This is important because analyzing functional
imaging data is particularly based on testing differences of parameter estimates. Therefore,
we use a separated multivariate GLM

Y = (X1X2)

(
B1

B2

)
+ E = X1B1 +X2B2 + E

and the special null hypothesis H0 : B2 = 0 that is only related to X2, that part of the
design matrix that contains the information of interest.

We will show that any null hypothesis on the classical multivariate linear model can be
transformed into the separated model and can be tested via the block-wise permutation
method including a random shift.

References
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cal Parametric Mapping – The Analysis of Functional Brain Images. Academic Press,
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Some tests for covariance matrices with large
dimension

M. Rauf Ahmad1, Martin Ohlson1 and D. von Rosen1,2

1 Linköping University, Sweden, email: {muahm, mohl}@mai.liu.se
2 Swedish University of Agricultural Sciences, Uppsala, Sweden,

email: Dietrich.von.rosen@et.slu.se

Keywords: covariance testing, high-dimensionality, sphericity.

Let Xk = (Xk1, . . . , Xkp)
′, k = 1, . . . , n, be n independent and identically distributed

random vectors where Xk ∼ Np(µ, Σ). We present test statistics for

H0 : Σ = I and H0 : Σ = κI,

when p may be large, and may even exceed n, where κ > 0 is any constant. The test
statistics are constructed using unbiased and consistent estimators composed of quadratic
and bilinear forms of the random vectors Xk. Under very general settings, the proposed
test statistics are shown to follow an approximate normal distribution, for large n and p,
inclusive of the case when p > n, or even p � n. The statistics are based on minimal
conditions avoiding the usually adopted stringent assumptions found in the literature for
similar high-dimensional inferences, for example assumptions on the traces of powers of the
covariance matrix Σ, or assumptions on the relations between p and n (see, for example,
[2], [1]: Chs. 5&8). The performance of the test statistics is shown through simulations.
It is demonstrated that the test statistics are accurate for both, size control and power for
moderate n and any p, where p can be much large than n. The real life application of the
statistics is also illustrated using practical data sets.

References

[1] Fujikoshi, Y., Ulyanov, V. U., Shimizu, R. (2010). Multivariate Statistics: High-
Dimensional and Large-Sample Approximations. Wiley, New York.

[2] Ledoit, O., Wolf, M. (2002). Some hypothesis tests for the covariance matrix when
the dimension is large compared to the sample size. The Annals of Statistics, 30(4),
1081-1102.
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Estimating regression parameters: a mosaic of
estimation strategies

Ejaz Ahmed

University of Windsor, Canada, email: seahmed@uwindsor.ca

Keywords: linear model, penalty type estimator, regression parameters, shrinkage esti-
mator.

In this talk, I address the problem of estimating a vector of regression parameters in
a partially linear model. My main objective is to provide natural adaptive estimators
that significantly improve upon the classical procedures in the situation where some of the
predictors are inactive that may not affect the association between the response and the
main predictors.

In the context of two competing regression models (full and sub-models), we consider
shrinkage estimation strategy. The shrinkage estimators are shown to have higher effi-
ciency than the classical estimators for a wide class of models. We develop the properties
of these estimators using the notion of asymptotic distributional risk. Further, we pro-
posed absolute penalty type estimator (APE) for the regression parameters which is an
extension of the LASSO method for linear models. The relative dominance picture of the
estimators are established. Monte Carlo simulation experiments are conducted and the
non-parametric component is estimated based on kernel smoothing and B-spline. Further,
the performance of each procedure is evaluated in terms of simulated mean squared error.
The comparison reveals that the shrinkage strategy performs better than the APE/LASSO
strategy when, and only when, there are many nuisance variables in the model. I plan to
conclude this talk by applying the suggested estimation strategies on a real data set which
illustrates the usefulness of procedures in practice.
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Maximum likelihood estimates for Markov-additive
processes of arrivals by aggregated data

Alexander Andronov

Transport and Telecommunication Institute, Latvija,
email: lora@mailbox.riga.lv

Keywords: additive components, parameter estimation, time-homogeneous Markov pro-
cess.

We consider a simplification of Markov-additive process of arrivals. Let N = {0, 1, ...}, r
be a positive integer, E be a countable set, and (X, J) = {(X(t), J(t)), t ≥ 0} be a
considered process on state space Nr × E. The increments of X are associated to arrival
events. Different (namely r) classes of arrivals are possible, so Xi(t) = total number of
arrivals in (0, t] in the class i, i = 1, 2, ..., r. We call X the arrival component of (X, J),
and J - the Markov component of (X, J).
Whenever the Markov component J is in the state j, the following two types of transitions
in (X, J) may occur. 1) The i-arrivals without a change of state in j ∈ E occur at rate
λij(n), n > 0. 2) Changes of state in J without arrivals occur at rate λj,k, k ∈ E, j 6= k.

We suppose that J is a birth and death process. Let
−→
λ =

(
λj,j+1 : j = 1, ...,m− 1

)
,

←−
λ =

(
λj,j−1 : j = 2, ...,m

)
. If the state j ∈ E is fixed, then different arrivals form inde-

pendent Poisson flows. Further, let qi(n) be a probability that i-arrival contains n items,∑
n>0 qi(n) = 1. These probabilities do not depend on state j ∈ J and are the known

ones. Now, the i-arrival rates have the following structure: λij(n) = vj

(
α〈i〉

)
qi(n), j =

1, ...,m, where vj is a known function to an approximation of the parameters α〈i〉 =(
α1,i, α2,i, ..., αk,i

)T
.

We consider a problem of unknown parameters α =
(
α〈1〉 α〈2〉 ... α〈r〉

)
k×r

,
−→
λ and

←−
λ

estimation. It is supposed that we have n independent copies X(1)(t), ..., X(n)(t) of the

considered process X(t) =
(
X1(t), ..., Xr(t)

)T
- total numbers of arrivals of various classes

in (0, t]. Our initial point is the following: each X(t) has multivariate normal distribution
with mean E(X(t)) = tµ and covariance matrix Cov(X(t)) = tC, where µ is r-dimensional
column vector and C is (r × r)-matrix. The sample mean µ∗ and the sample covariance
matrix C∗ are sufficient statistics, therefore we must make statistical inferences on this
basis. In the paper maximum likelihood estimates are calculated for unknown parameters.

References

[1] Pacheco, A., Tang, L. C., Pragbu U. N. (2009). Markov-Modulated Processes and
Semiregenerative Phenomena. World Scientific, New Jersey - London - Singapore.
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7



On skewed ln,p-symmetric distributions

Reinaldo B. Arellano-Valle1 and Wolf-Dieter Richter2

1 Pontificia Universidad Católica de Chile, Chile, email: reivalle@mat.puc.cl
2 University of Rostock, Germany, email: wolf-dieter.richter@mathematik.uni-rostock.de

Keywords: ln,p-symmetric distributions, skewed distributions.

Skewed elliptically contoured distributions were introduced first in [3]. Many authors
extended these consideration under various aspects and in different ways. The book [4]
gives an overlook on these efforts.

The authors of [1] bring a certain new structure into the field and unify many different
approaches from a selectional point of view. The concept of fundamental skew distributions
which unifies all at this time known approaches has been developed in [2].

Based upon a generalized method of indivisibles which makes use of the notion of
non-Euclidean surface content, in [7] a geometric measure representation formula for ln,p-
symmetric distributions is derived. This formula enables one to derive exact distributions
of several types of functions of ln,p-symmetrically distributed random vectors. This has
been demonstrated by generalizing the Fisher distribution in [7] and also for several special
cases in [6] and [5].

Here we extend the class of skewed distributions for cases where the underlying dis-
tribution is an ln,p-symmetric one. To this end, we first exploit the geometric measure
representation formula in [7] to derive marginal and conditional distributions from ln,p-
symmetric distributions. Then, the general density formula for skewed distributions from
[1] applies and finally we follow the general concept in [2].
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On estimation problems for multivariate
skew-symmetric distributions

Adelchi Azzalini

University of Padua, Italy, email: azzalini@stat.unipd.it

Keywords: anomalies of maximum likelihood estimation, skew-symmetric distributions

A currently active stream of literature deals with continuous multivariate distributions
whose density function is the form

f(x) = 2 f0(x)G{w(x)}, x ∈ Rd,

where f0 is a density function such that f0(x) = f0(−x), G is a distribution function on
the real line such that G′ exists and is an even function, and w is odd in the sense that
w(−x) = −w(x) ∈ R. The term ‘skew-symmetric’ is often used to refer to a density f(x)
of this type, although the effect of perturbation of the symmetric density f0(x) by the
factor G{w(x)} can be more complex than turning it into an asymmetric distribution.

Two important special cases of this construction are the so-called skew-normal and the
skew-t distribution, which are obtained by choosing the ingredients as follows:

f0 G(w) w(x)

Nd(0,Ω) density Φ(w) α>ω−1x

td(ν,Ω) density T (w, ν + d) α>ω−1x

(
ν + d

ν + x>Ω−1x

)1/2

where a standard type of notation is adopted, and ω is a diagonal matrix whose non-null
terms are the standard deviations associated to the variance matrix Ω.

While the probability side of this formulation leads to a smooth mathematical devel-
opment, and several nice properties follow with relatively little effort, its statistics side has
shown to be more challenging. More specifically, maximum likelihood estimation (MLE)
of the above parameters Ω, α and ν, when this is present, complemented by a location
parameter, can exhibit two sort of anomalies:

(i) the observed and the expected information matrices are singular at α = 0 for certain
families, in particular for the skew-normal family indicated above,

(ii) for finite sample size, the MLE of α may happen to diverge with non-null proba-
bility.

We shall first review the state of the art for this estimation problem, and then focus on
its case (ii) which so far has not yet been given a satisfactory general solution. A proposal
based on a form of penalized likelihood function will be put forward.
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On Pearson-Kotz Dirichlet distributions

Narayanaswamy Balakrishnan1 and Enkelejd Hashorva2

1 McMaster University, Hamilton, Ontario, Canada,
email: bala@univmail.cis.mcmaster.ca

2 University of Lausanne, Lausanne, Switzerland, email: Enkelejd.Hashorva@unil.ch

Keywords: conditional distribution, Pearson-Kotz Dirichlet distributions, random vec-
tors.

In this talk, I will discuss some basic distributional and asymptotic properties of the
Pearson-Kotz Dirichlet multivariate distributions. These distributions, which appear as
the limit of conditional Dirichlet random vectors, possess many appealing properties and
are interesting from theoretical as well as applied points of view. Finally, I will illustrate
an application concerning the approximation of the joint conditional excess distribution
of elliptically symmetric random vectors.

10



Analysis of contingent valuation data with self-selected
rounded WTP-intervals collected by two-steps

sampling plans

Yuri K. Belyaev

Ume̊a University, Sweden, email: yuri.belyaev@math.umu.se
Swedish University of Agricultural Sciences, Sweden, email: yuri.belyaev@sekon.slu.se

Keywords: estimable characteristics, interval rounded data, maximisation likelihood,
recursion, resampling.

In collecting contingent valuation data on Willingness To Pay (WTP-)points, rather
than asking a respondent to state an estimate of his/her WTP-point or select one between
given brackets, the respondent may freely self-select any interval of choice that contains
the WTP-point. For the collected data, we found that presence of strong rounding is a
typical feature. The self-selected intervals can be considered as censoring the true WTP-
points. Usually in the Survival Analysis it is assumed that the censoring intervals are
independent of such points and cover only some of them. But here these intervals can
depend on the unobserved positions of their WTP-points, and all WTP-points are covered.
Due to rounding many of the same self-selected intervals will be often stated by different
respondents. We suppose that the true WTP-points corresponding different respondents
can be considered as values of independent identically distributed random variables. It is
useful to find consistent estimates related to the distribution of these WTP-points. We
propose statistical models which admit dependency of the self- selected WTP-intervals
on the positions of their WTP-points. Note that one has to distinguish between the
probability to select an interval containing WTP-point and the probability of the different
event that the interval contains the WTP-point.

We suggest a two-step plan of random sampling individuals from a population of in-
terest that it would be possible consistently to estimate (identify) some of important
characteristics of the unknown distribution of WTP-points. On the first step freely self-
selected WTP-intervals are collected. It is possible to recognize weather the size of the first
sample is large enough to guarantee be related to a desired majority of the population of
interest. Based on the collected set U of different stated self-select intervals the collection
V of division intervals is generated. Each interval in U is a union of related division inter-
vals. Besides that two auxiliary subsets from U and V are calculated. On the second step
new random selection of individuals continued. Each selected respondent is asked to state
freely a self-selected WTP-interval containing true WTP-point. If the stated interval has
already been registered in U then as soon as possible the respondent should be suggested
to select, from the related division intervals, the interval containing the true WTP-point.
In this case the pair of both, the initially stated WTP-interval and the more exact selected
division interval has to be added to the second step sample. If the respondent was not
able to select such division interval then the only single self-selected interval has to be
added to the second step sample. The subset of pairs is used for estimation of conditional
probabilities to state a self-selected interval given the division interval containing the true
WTP-point.

The log likelihood function, which parameters are probabilities of divisions intervals
containing the true WTP-points, given the list of all selected division intervals in the
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pairs, and the all single self-selected intervals, can be written. The maximum likelihood
(ML-)estimates of the projection of WTP-distribution on the set of all division intervals is
obtained based on special recursion. The maximizing likelihood recursion is obtained by
the method of Lagrange multipliers. The consistent lower and upper bounds of the mean
WTP-value and the consistent estimate of medium mean WTP-distribution are calculated.
Accuracy of these estimators can be characterized by the distributions of their deviations
from the true unknown values. The distributions of deviations can be found by applying
related resampling method. The detailed description of this research work, joint with
Bengt Kriström, is given in [1].

References

[1] Belyaev, Yu. K., Kriström, B. (2011). Two-Step Approach to Self-Selected Interval
Data in Elicitation Surveys, (in preparation).
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Error Orthogonal Models and Commutative
Orthogonal Block Structure: equivalence

Francisco Carvalho1 and João T. Mexia2

1 Instituto Politécnico de Tomar, email: fpcarvalho@ipt.pt
2 Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa

CMA - Centro de Matemática e Aplicações

Keywords: COBS, error orthogonal, linear models, OBS.

We establish the equivalence of two important classes of models with Orthogonal Block
Structure (OBS), namely:

• Error orthogonal models, whose least squares estimators are UBLUE, having the

family of variance-covariance matrices given by V =

{
m∑
j=1

γjQj

}
;

• COBS, these are the models whose orthogonal projection matrix on the space spanned
by the mean vector commutes with the matrices Q1, . . . ,Qm.

This equivalence is fruitful since it enables us to use the model structure to estimate
variance components.
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Combined method which includes statistical and
heuristic approaches in object recognition

Nikolay Chichvarin and Ivan Chichvarin

Bauman Moscow State Technical University, Russia, email: genrih.gerz@bmstu.ru

Suggested method is based on classical formulation of the problem of recognition of an
object in complex environment, composed from components listed below:

• the deterministic background;

• random background;

• the object that is recognized.

The formulation of the problem of recognition is devided into three parts:

• Problem of preprocessing the image, that can contain or doesn’t contain the desired
object;

• Problem of recognition;

• Problem of identification.

This article describes solving of the problem of preprocessing in two aspects:

• Filtration of the incoming signal by means of statistical methods;

• Partly restoring of defocused images by solving the inverse problem.

Object’s detection in distorted image is defined as a procedure of comparing the result of
transformation of analysed image with some threshold value:

L | A(x, y) |≥
∏
| A(x, y) |

where L| · | is a transformation operator,
∏
| · | is a threshold value operator. The object

is detected, if image meets the condition, described above. The quality of recognition is
characterized by the probability that the condition is fullfilled in the case when the image
contains the object.

It is also well-known the exact form of the operators L| · | and
∏
| · | and quality

of the recognition depend on the existance of apriori data about desired objects, noises,
interferences and distortions. Therefore, as a basis for determining optimal parameters of
operators and criteria, in this article the fundamentals of statistical decision theory are
used, and corresponding criterion is proposed.

In this article we define identification problem as comparison of image meant to be
the desired object with etalons from some defined class. So the identification problem is
reduced to a classification problem. We also take into account that identification problem
is commonly solved with the following methods:

• Method of direct comparison of the object with an etalon image;

• Correlation method;
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• Identification method based on the system of features.

Identification method based on the system of features also uses etalons, but compares
object’s features instead of the whole etalon. It helps to reduce the volume of needed
memory and the processing time. One has to remember that extraction can introduce
errors, so it is better to use histograms for features values.

When there are many different objects, the hierarchical algoritms are commonly used,
so that on lower levels we deal with features which do not require big amount of compu-
tation, and on the higher levels, where the amount of objects is less, one can use more
informative features.

The first two methods have high computational complexity.
The increase of the processing speed in solving of the problem of recognition is an

actual task. We propose a method and implementation for its algorithm, which allows to
increase the speed of recognition of the object against the background of a complex scene
in terms of interference.

At the identification stage we propose to use a heuristic learning algorithm. The article
illustrates the results of the programs that implement the algorithm based on the proposed
method.
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Testing goodness-of-fit with parametric AFT model

Ekaterina Chimitova and Natalia Galanova

Novosibirsk State Technical University, Novosibirsk, Russia, email: chim@mail.ru,
natalia-galanova@yandex.ru

Keywords: AFT model, Anderson-Darling test, censored samples, Cramer-von Mises-
Smirnov test, goodness-of-fit, Kolmogorov test, χ2 RRN test for AFT model.

Let the nonnegative random variable ξ denote the time-to-event or failure time of an
individual. The probability of an item surviving up to the time t is given by the survival
function:

S(t) = P {ξ > t} = 1− F (t),

where F (t) is the cumulative distribution function of random variable ξ.
One of the well-known regression models in reliability and survival analysis is the

Accelerated Failure Time model (AFT model). Usually in accelerated life testing all items
are divided into several groups and tested under different accelerated stress conditions.
Following [1], the survival function for parametric AFT model under constant over time
stress x can be calculated as:

S(t, β) = S0

(
t

ρ(x, β)

)
,

where ρ(x, β) is the stress function and S0 is the baseline survival function, which usually
belongs to some parametric family of distributions, such as Exponential, Weibull, Gamma,
Generalized Weibull and others.

In this paper we consider the problem of testing goodness-of-fit with parametric AFT-
model. One approach to this problem is based on using residuals. If the choice of baseline
survival function is appropriate, then the sample of residuals belongs to the baseline dis-
tribution, standardized by the scale parameter. For testing this hypothesis classical non-
parametric goodness-of-fit tests can be used: Kolmogorov test, Cramer-von Mises-Smirnov
test, Anderson-Darling test ([2]).

The second approach considered in this paper is the χ2 RRN goodness-of-fit test for
parametric AFT model [1]. This test is based on division of the interval [0, T ] into smaller
intervals and comparing observed and expected numbers of failures.

In this paper statistical distributions of these considered goodness-of-fit tests are inves-
tigated with computer simulation technique for complete and censored data. Statistical
distributions under the valid null hypothesis are considered in dependance of baseline dis-
tribution, size of failure sample and censoring degree. The considered goodness-of-fit tests
are compared by power for close competing hypotheses.

References

[1] Bagdonavicius, V., Kruopis, J., Nikulin, M. (2010). Nonparametric Tests for Censored
Data. Wiley-ISTE.

[2] Lemeshko, B.Yu., Lemeshko, S.B. (2009). Distribution models for nonparametric tests
for fit in verifying complicated hypotheses and maximum-likelihood estimators. Part
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Another generalization of bivariate FGM distributions

Carles M. Cuadras and Walter Diaz

University of Barcelona, Spain, email: ccuadras@ub.edu, wdiaz0@hotmail.com

Keywords: copulas, Farlie-Gumbel-Morgenstern distribution, given marginals, Pearson’s
contingency coefficient.

Let H(x, y) be the bivariate cdf of (X,Y ), with univariate marginals F (x), G(y) and
supports [a, b] , [c, d] , respectively. Throughout this abstract, x and y in H(x, y), F (x),
G(y), as well as u and v in C(u, v), where 0 ≤ u, v ≤ 1, will be suppressed. We write
H ∈ F(F,G), where F(F,G) is the family of cdf’s with marginals F,G.

The Farlie-Gumbel-Morgenstern (FGM) family is Hθ = FG[1+θ(1−F )(1−G)], −1 ≤
θ ≤ 1, and the corresponding copula is Cθ = uv[1+θ(1−u)(1−v)],−1 ≤ θ ≤ 1. This family
is frequently used in theory and applications. This motivated to study proper extensions
in [2] and [1].

Let Φ,Ψ be two univariate cdf’s with the same supports [a, b] , [c, d] . Suppose that the
Radon-Nykodim derivatives dΦ/dG, dΨ/dG exist. We define the bivariate cdf

H = FG+ λ(F − Φ)(G−Ψ).

This cdf reduces to the classic FGM for Φ = F 2,Ψ = G2, and has interesting properties:

1. H ∈ F(F,G) for λ belonging to an interval depending on dΦ/dG, dΨ/dG.

2. H suggests the congugate family H∗ ∈ F(Φ,Ψ).

3. Define a1 = 1 − dΦ/dF, b1 = 1 − dΨ/dG. Then E[a1(X)] = E[b1(Y )] = 0 and

E[a2
1(X)] = α− 1, E[b21(Y )] = β − 1, where α =

∫ b
a

( dΦ
dF )2dF, β =

∫ d
c

(dΨ
dG )2dG.

4. The first canonical correlation is ρ1 = λ
√

(α− 1)(β − 1) and Pearson contingency
coefficient is φ2 =ρ2

1.

5. Spearman’s rho and Kendall’s tau are ρS = 12λ( 1
2 − FΦ)( 1

2 −GΨ) and

τ = 8λ( 1
2 − FΦ)( 1

2 −GΨ), where FΦ =
∫ b
a

ΦdF, ΦF =
∫ d
c
FdΦ.

The geometric dimensionality of a bivariate cdf is defined and discussed. Then we
introduce the following generalized FGM

H = FG+ λ1(F − Φ)(G−Ψ)
+ λ2[( 1

2F
2 + (FΦ − 1

2 )F − FΦ(x)][( 1
2G

2 + (GΨ − 1
2 )G−GΨ(y)],

where FΦ(x) =
∫ x
a

Φ(t)dF (t), GΨ(y) =
∫ y
c

Ψ(t)dG(t). This H ∈ F(F,G) is diagonal and
two-dimensional. Finally we study how to approximate any cdf by a member of this family.
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Let (X,Y ) be a pair of continuous random variables with the joint distribution function
H and univariate marginal distribution functions F and G. Let H(y|x) = P (Y ≤ y|X = x)
denote the conditional distribution of Y given X = x. Formally, the random variable
Y is conditionally symmetric given X = x if Y |X = x is symmetric; i.e., H(y|x) =
1 − H(−y|x). Consequently, conditionally symmetric random variable Y given X = x
must be symmetric, i.e., G(y) = 1 − G(−x). Of course, the converse is false. When Y
is symmetric but not conditionally symmetric, then H(y|x) 6= 1 − H(−y|x), for some x
and y. Conditional symmetry is of interest in modelling time series data in business and
finance; see e.g., [2, 3, 5]. There are some tests for identifying conditional symmetry in the
statistical literature, see for example [1, 4, 6]. However, little effort was made in proposing
measures for evaluating the degree of this kind of asymmetry present in data. This talk
discusses some indices to measure conditional asymmetry for continuous random variables.
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The problem of classifying a single observation from a multivariate Gaussian field into
one of the two populations specified by different parametric mean models and common
intrinsic covariogram is considered. This paper concerns with classification procedures
associated with Bayes Discriminant Function (BDF) under the deterministic spatial sam-
pling design. In the case of parametric uncertainty, the maximum likelihood estimators of
unknown parameters are plugged in the BDF. The actual risk and the Approximation of
the Expected Risk (AER) associated with aforementioned plug-in BDF are derived. This
is an extension of the results in the papers [1], [2] to the multivariate case with general loss
function and for complete parametric uncertainty, i.e. when parameters of the mean and
the covariance functions are unknown. The values of the AER are examined for various
combinations of parameters for the bivariate, stationary geometric unisotropic Gaussian
random field with exponential covariance function sampled on a regular 2-dimensional
lattice.
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An important area of financial mathematics studies the expected returns and volatil-
ities of the price dynamics of stocks and bonds. The stochastic dynamics of stocks and
bonds should be correctly specified since misspecification of a model leads to erroneous
valuation and hedging. We have to admit that economic conditions change from time to
time, so we assume that return and volatility depend on time as well as on price level for
some stock or bond. In this case it is reasonable to use a stochastic differential equation
with the time-varying parameters as the model for the description of the price dynamics.

It is not easy to describe the time-varying parameters by means of certain functional
forms. Flexible models do not assume any specific form of these functions. This data-
analytic approach called nonparametric regression can be found in statistical literature.
However, the direct application of the ideas does not bring desired results. The improve-
ments of the identification procedures were presented in [1, 2, 4]. The main idea of these
works was based on the discretization of the stochastic differential equation and further
approximation of the parameter functions by constants at the discretization points. It
is clear that the accuracy of the estimates depends on the accuracy of the discretization
method. To overcome this problem we propose to consider the time-varying parameters as
an control functions and solve the identification task as an optimal control problem using
the maximum principle [3, 5].

In the paper we present the principles of the identification method construction, show
its proficiency and give some illustrations.
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In the experiments in which the response to a treatment can be affected by other
treatments, the interference model with neighbor effects is usually used. It is known, that
circular neighbor balanced designs (CNBDs) are universally optimal under such a model,
if the neighbor effects are fixed as well as random ([1], [2], [3]). However, such designs
cannot exist for each combination of design parameters. In [4] it is shown that in the fixed
interference model circular weakly neighbor balanced desings (CWNBDs) are universally
optimal over the class of designs with the same number of treatments as experimental units
per block and specific number of blocks. It is known, that neither CNBD nor CWNBD
can exist if the number of blocks is p(t−1)±1, p ∈ N, with t - number of treatments. The
paper [5] gave the structure of the left-neighboring matrix of E-optimal complete block
designs under the model with fixed neighbor effects over the classes of designs with p = 1.
The aim of this paper is to generalize E-optimality results for designs with p ∈ N assuming
random neighbor effects.
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In statistical research sometimes optimality criteria of experimental designs are for-
mulated as functions of the eigenvalues of nonnegative definite information matrices. The
aim of this paper is to characterize the information matrix via its eigenvalues. We are
looking for a matrix in a given set such that its smallest nonzero eigenvalue is maximal
over the smallest eigenvalues of matrices from this set. Obtained algebraic results are
used to determine D-, E-, and universally optimal circular complete block designs under
an interference model.

Presented results are based on the following papers: [1] - [3].
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In searching for a proper description of various kind of stochastic dependences among
random quantities considered in reliability and biomedical investigations we apply a gen-
eral method of construction of bivariate probability distributions (or the corresponding
joint survival function) of such quantities. High average pulse rate and/or blood pres-
sure, excessive level of cholesterol, or other evidently dependent in magnitude levels of
some chemicals in patient’s body could serve as examples of such stochastically dependent
quantities.

In effort to find general device for underlying stochastic dependences among these
indicators we define and employ (on the physical part) the ’micro-shocks’ - ’micro-damages’
pattern [3] that naturally occurs in some reliability investigations. This reliability pattern
can be redefined for a wider range of phenomena such as bio-medical [1], econometric, or
other ”realities”.

In general, we consider random variables X1, X2 that interact with each other so that
the impact of one of them on the other is mutual in the sense that each variable is an
explanatory to the other.

The joint probability distribution of each such pair can model some mutual (”physical”,
in a very wide sense, not only in a strict sense of the physics theory) interactions.

In the ’micro-shocks’ - ’micro-damages’ pattern, the realizations xi of the random
variables Xi, accordingly to their sizes influence the hazard rate (or its parameter) of the
other random variable Xk, i, k = 1, 2 and i 6= k. The considered method of construction
allows to obtain a joint survival function

S(x1, x2) = P(X1 > x1, X2 > x2)

of the random vector (X1, X2), given both marginal survival functions P(X1 > x1) and
P(X2 > x2).

It turns out that in the simplest case, when both marginals are exponentially dis-
tributed, we obtain the common first bivariate exponential Gumbel distribution [5]. In
some applications one can consider the method as an extension of what we call ”Gum-
bel device” so that any (not necessarily exponential) two marginal survival functions
P(X1 > x1), P(X2 > x2) of X1, X2 can be ”joint” by what we call ”Gumbel depen-
dence factor” exp(−cx1x2), where parameter c is any nonnegative real and the condition
c = 0 stands for independence.

Realize that this construction preserves given in advance, marginal distributions. Also,
one can see that the above dependence factor can be generalized to a wider class of
functions. For example, one may consider the Gumbel factors in the following ”Weibullian
form” exp(−cxa1xb2) with positive parameters a, b.
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In fact, any arbitrary two continuous marginals (not necessarily from the same class
of probability distributions) may ”invariantly” be ”connected” by a given fixed ’Gumbel
factor’ to ”become” stochastically dependent. In reverse, a fixed pair of marginals can be
connected in many different ways each corresponding to one Gumbel factor.

Moreover, the above constructions can easily be extended to higher than two dimen-
sions.
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Let a sequence (Yt)t=...,−1,0,1,... be generated by a regression–autoregression

Yt = Ψ(Yt−1, Xt, Ut) + Φ(Yt−1, Xt, Ut)ξt, (1)

where (ξt) is a sequence of zero mean i.i.d. random variables with unit variance, Yt is
an output variable, Xt, Ut are noncontrolled and controlled input random variables, not
depending on (ξt), and Ψ and Φ > 0 are unknown functions defined on R3.

Denote Zt−1 = (Yt−1, Xt, Ut). Note that for x ∈ R3 we have the conditional expectation
E(Yt|Zt−1 = x) = Ψ(x) and the conditional variance D(Yt|x) = Φ2(x).

We presume that Assumptions 3.1 and 3.2 from [1] are fulfilled. Then, according to
[1:Lemma 3.1], (Yt) is a strictly stationary process, satisfying the strong mixing condition
with a strong mixing coefficient α(τ) ≤ c0ρτ0 , 0 < ρ0 < 1, c0 > 0. In this case, we can find
the MSE of the proposed estimators as in [2].

We estimate Ψ(x) by the statistic

Ψn(x) =

n+1∑
t=2

Xt

h3
t

K

(
x− Zt−1

ht

)/ n+1∑
t=2

1

h3
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K

(
x− Zt−1

ht

)
, (2)

where K(u) =

3∏
i=1

K(ui) is a three-dimensional product-form kernel, (hn) ↓ 0 is a number

sequence. The conditional variance for model (1) is estimated by a statistic similar to (2).
Consider the stabilization problem of Yn on the level Y ∗. Let Ψ be a simple continuous

function. Then we can construct the following control algorithm for the given level Y ∗ :

U∗n =
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Simulations and empirical results based on the macroeconomic data of Russian Feder-
ation are provided.
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While traditionally, confirmatory clinical trials often had a single univariate clinical
endpoint, recent trends show a growing number of such trials with multiple endpoints.
The reasons for this are an increased interest in safety parameters, improved biomarker
assessment technology and an increased number of trials with active comparators as the
control group, where the improvement over the existing standard-of-care is not easily
characterized by a single measurement.

Regarding the confirmatory analysis of the treatment effects, we have to make a choice
between multivariate and multiple hypothesis testing. This talk will review similarities
and differences between the two approaches. In lower-dimensional situations, there often
is an interest in the individual endpoints. Hence multiple methods that easily facilitate
confirmatory statements about the individual endpoints with strong familywise error rate
control (Maurer et al., 2011) are often preferred.

In higher-dimensional situations, multiple methods turn out to be too conservative.
Additionally, there is usually less interest in the individual endpoints, such that the mul-
tiple testing concept of consonance (Gabriel, 1969) is less relevant. In this situation, the
advantages of multivariate methods (Srivastava, 2002, 2009) may carry more weight.
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Multivariate analysis is becoming increasingly relevant in genetics, due to the auto-
mated generation of large databases of genetic markers, single nucleotide polymorphisms
(SNPs) in particular. Most SNPs are bi-allelic, and individuals can be characterized gener-
ically as aa, ab or bb. Such genotype data can be coded in an indicator matrix. Additional
indicators can be defined to indicate whether an individual is a carrier or a non-carrier of
a particular allele.

Genetic markers are usually expected to be in Hardy-Weinberg equilibrium which can
be assessed by a chi-square or exact test. Such a test concerns the correlation between the
two indicators for the same marker (within marker correlation).

Correlation between two different markers is referred to as linkage disequilibrium in
genetics. If the data is represented by indicator matrices, then linkage disequilibrium
can be studied by a canonical correlation analysis of two indicator matrices. General-
ized inverses can be used to cope with the singularity of covariance matrices. By using
the carrier-indicators as supplementary variables, such a canonical analysis is also infor-
mative about Hardy-Weinberg equilibrium. Biplots [2] can be used to visualize the results.

In the light of the larger number of markers obtained in genotyping studies, Carroll’s
[1] generalized canonical correlation analysis can be used to study multiple markers simul-
taneously.

The various forms of the canonical analysis of genetic markers will be illustrated with
several examples in the talk.
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Most multivariate statistical methods that are used in practice have a common theory
of matrix products – such methods include multiple regression, principal component anal-
ysis, correspondence analysis, log-ratio analysis, linear discriminant analysis, canonical
correlation analysis, as well as several constrained variants of these methods which mix
rank reduction with linear constraints, for example redundancy analysis and canonical
correspondence analysis. Where there is a matrix product, there is a biplot, a type of
multivariate scatterplot that graphically represents two sets of objects – usually cases and
variables – in a common vector space. In the linearly constrained versions, the constraining
variables can be added to the biplot to obtain what is often called a “triplot”.

For a couple of years I have been experimenting with dynamic graphics in statistics,
producing video animations of models, algorithms and results. The article by Greenacre
and Hastie (2010) is a first product of this work, containing four videos embedded in the
article where there would otherwise be static figures. The videos illustrate much more
clearly the models and results of the complex statistical analyses presented in the article.
Other articles with video content as supplementary material are by Greenacre (2010a,
2011).

Mainly as a complement to my book “Biplots in Practice” (Greenacre, 2010b) I have
been developing a series of video animations, not only as an educational tool but also
opening up new ways of understanding and interpreting multivariate statistical results. In
this talk I will take you on a moving-picture journey from the simplest biplot, based on
multiple regression, through several illustrations of other well-known multivariate methods,
and finally the canonical correspondence analysis of a large ecological data set, including
hundreds of cases and hundreds of dependent and independent variables.
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Probability of Failure (PF) of fatigue-prone AirCraft (AC) and Failure Rate (FR) of
AirLine (AL) for specific inspection program can be calculated using Markov Chains (MC)
and Semi-Markov Process (SMP) theory if parameters of corresponding models are known.
Exponential approximation of fatigue crack size growth function, a(t) = a0 exp(Qt), where
a0, Q are random variables, is used. Estimation of the parameters of the distribution
functions of these variables and the choice of final inspection program under condition of
limitation of PF and FR can be made using results of observation of some random fatigue
crack in full-scale fatigue test of the airframe. For processing of acceptance type test,
when redesign of new aircraft should be made if some reliability requirements are not met,
the minimax decision is used. The process of operation of AC is considered as absorbing
MC with (n + 4) states. The states E1, E2, ..., En+1 correspond to AC operation in time
intervals [t0, t1), [t1, t2), ..., [tn, tSL), where n is an inspection number, tSL is specified life
(SL), i. e. AC retirement time. States En+2, En+3, and En+4 are absorbing states: AC
is descarded from service when the SL is reached or fatigue failure (FF), or fatigue crack
detection (CD) takes place. In corresponding matrix for operation process of AL the states
En+2, En+3 and En+4 are not absorbing but correspond to return of MC to state E1(AL
operation returns to first interval). In the matrix of transition probabilities of AC, PAC ,
there are three units in three last lines in diagonal, but for corresponding lines in matrix
for AL, PAL, the units are in the first column, corresponding to state E1. Using PAC we
can get the probability of FF of AC and the cumulative distribution function, mean and
variance of AC life. Using PAL we can get the stationary probabilities of AL operation
{π1, ..., πn+1, πn+2, ..., πn+4}. Here πn+3defines the part of MC steps, when FF takes place
and MC appears in state En+3. The FR, λF , and the gain of this process, g, are calculated
using the theory of SMP with reword, taking into accout the reword of succesful operation
in one time unit, the cost of acquisition of new AC after SL, FF or CD take place,... If
the gain is measured in time unit then Ln+3 = g/π3 is a mean time between FF; the
intensity of fatigue failure λF = 1/Ln+3. The problem of inspection planning is the choice
of the sequance {t1, t2, ..., tn, tSL} corresponding to maximum of gain under limitation of
AC intensity of fatigue failure. In a numerical example the minimax decision, based on
observation of some fatigue crack during acceptance full-scale fatigue test of airframe, is
considered.
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Questions are posed regarding the influence that the column sums of the transition
probabilities of a stochastic matrix (with row sums all one) have on the stationary distri-
bution, the mean first passage times and the Kemeny constant of the associated irreducible
discrete time Markov chain. Some new relationships, including some inequalities, and par-
tial answers to the questions, are given using a special generalized matrix inverse that has
not previously been considered in the literature on Markov chains.
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In order to develop a general approach for analysis of non-normal multivariate data, it
would be desirable to obtain a simple-minded framework that can accommodate a wide
variety of different types of data, much like generalized linear models do in the univariate
case. There is no shortage of multivariate distributions available, but the main stumbling
block so far has been the lack of a suitable multivariate form of exponential dispersion
model.

In the univariate case, an exponential dispersion model ED(µ, σ2) is a two-parameter
family parametrized by the mean µ and dispersion parameter σ2, with variance σ2V (µ),
where V denotes the unit variance function. The generalized linear models paradigm
is based on combining a link function with a suitable linear model. Estimation uses
quasi-likelihood for the regression parameters, and the Pearson statistic for estimating the
dispersion parameter.

We consider a new k-variate exponential dispersion model EDk(µ,Σ) aimed at provid-
ing a fully flexible covariance structure corresponding to a mean vector µ and a positive-
definite dispersion matrix Σ. The covariance matrix is of the form Cov(Y ) = Σ�V (µ),
where � denotes the Hadamard (elementwise) product between two matrices, and V (µ)
denotes the (matrix) unit variance function. We consider a multivariate generalized linear
model for independent response vectors Y i ∼ EDk(µi,Σ) defined by g(µ>i ) = xiB, where
the link function g is applied coordinatewise to µ>i , xi is an m-vector of covariates, and B
is an m× k matrix of regression coefficients. We estimate the regression matrix B using a
quasi-score function, and we estimate the dispersion matrix Σ using a multivariate Pear-
son statistic defined as a weighted sum of squares and cross-products matrix of residuals.
This model specializes to the classical multivariate multiple regression model when g is
the identity function and EDk(µ,Σ) is the multivariate normal distribution.

The construction of the multivariate exponential dispersion model EDk(µ,Σ) is based
on an extended convolution method, which makes the marginal distributions follow a
given univariate exponential dispersion model. We illustrate the method by considering
multivariate versions of the Poisson and gamma distributions, and discuss some of the
challenges faced in the implementation of the method.
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We consider the case, where a linear model has been set up for variables Y and
X1, . . . , Xn. All the variables in the model are observed with error. When calculating
the residuals for such a model, errors in the X variables will have important consequences
that cannot be ignored when performing further analyses with these residuals. I show
that this can be thought of as measurement errors carrying over to the residuals and the
process is analyzed in detail.

Such a model is quite typical in phylogenetic analyses (analysis where traits measured
for a species correspond to a sample element and the sample is treated as correlated data
because of the shared evolution of the species) in a situation where the relation between
two traits is sought and one (or both of them) need to be corrected for the value(s) of
some other trait(s). See e.g. [1] and [2] for examples.
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The method of k-nearest neighbors (k-NN) is recognized as a simple but powerful
toolkit in statistical learning [1], [2]. It can be used both in discrete and continuous
decision making known as classification and regression, respectively. In the latter case the
k-NN is aimed at estimation of conditional expectation y(x) := E(Y |X = x) of an output
Y given the value of an input vector x = (x1, . . . , xm). In accordance with supervised
learning set-up, a training set is given consisting of n pairs (xi, yi) and the problem is
to estimate y(x) for a new input x. This is exactly the situation in insurance where the
pure premium y(x) for a new client (policy) x is to be found as conditional mean of
loss. Typically the data do not contain any other record with the same x, thus the other
data points have to be used in order to estimate y(x). Using the k-NN methodology,
one first finds a neighborhood Ux consisting of k samples which are nearest to x w.r.t a
given distance measure d. Secondly, the (weighted) average of Y is calculated over the
neighborhood Ux as an estimate of y(x) :

ŷ(x) :=
1∑

i∈Ux
αi

∑
i∈Ux

αi · Yi,

where the weights αi are chosen so that the nearer neighbors contribute more to the
average than the more distant ones. We use the distance between the instances xi and xi′

in the form

d(xi,xi′) =

m∑
j=1

wj · dj(xij , xi′j),

where wj is the weight of the feature j and dj(xij , xi′j) = (xij − xi′j)2 (and a zero-one
type variable for categorical features).

We address the following key issues related to k-NN method: feature weighting (wj),
distance weighting (αi), determining the optimum value of the smoothing parameter k.
We propose a three-step multiplicative procedure to define wj which consists of 1) normal-
ization (eliminating the scale effect), 2) accounting for statistical dependence between the
feature j and Y , 3) feature selection to obtain a subset of features that performs best. All
our optimization procedures are based on cross-validation techniques. The so-called ‘curse
of dimensionality’ is effectively handled by our feature selection process which optimizes
the dimension of input.

Finally, comparisons with other methods for estimation of the regression function y(x)
(CART, generalized linear regression, use of model distributions) are drawn, which demon-
strate high competetiveness of the k-NN method. The conclusions are based on the analysis
of a real data set.
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Consider a (p×n)-matrix X = (X1, . . . , Xn), where a (pn)-vector vec (X) =
(
XT

1 , . . . , X
T
n

)T
is normally distributed with the positive definite covariance matrix Λ and the mean vector

vec (M) =
(
MT

1 , . . . ,M
T
n

)T
. Suppose that Λ follows the Kronecker product covariance

structure, that is Λ = Ψ ⊗ Σ, where Ψ = (ψij) is an (n × n)-matrix and Σ = (σij) is a
(p × p)-matrix and the matrices Ψ,Σ are supposed to be positive definite. Such model
is considered in [2], where the maximum likelihood estimates (MLE) of the parameters
M,Ψ,Σ are obtained. A special case of this model is an intraclass correlation structure
model which is considered in [1] and [3].

We consider the general linear model which follows a Kronecker product covariance
structure and we want to test the linear hypothesis

H : EX ∈ L,

where L is a linear subspace. The main result of the research is the following theorem.

Theorem (orthogonal decomposition).
Let X = ‖X1, X2, . . . , Xn‖ be a (p× n)-matrix which follows a Kronecker product covari-
ance structure and Cov (Xi, Xj) = ψijΣ, i, j = 1, n, and let matrices Ψ, Σ be positive
definite. Let L1,L2, . . . ,Lm be mutually orthogonal submodules of the module Rpn over a
ring Rpp and let a direct sum of these modules be Rpn:

Rpn = L1 ⊕ L2 ⊕ . . .⊕ Lm.

Consider a decomposition of a (p× n)-matrix X on mutually orthogonal components

X = projL1X + projL2X + . . .+ projLmX.

Then
a) random (p × n)-matrices projL1X, projL2X, . . . , projLmX are independent and

EprojLi
X = projLi

EX, where projections on submodules Li, i = 1,m are determined
by a bilinear form Ψ−1.

b) (projLi
X) (projLi

X)
T ∼Wp (dimLi,Σ,∆i) – a noncentral Wishart distribution with

a noncentrality parameter ∆i = (projLi
EX) (projLi

EX)
T

. Here projections on submod-
ules Li, i = 1,m are determined by a bilinear form Ψ−1.
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Let {ξ(n)
k,j , k, j ∈ N} and {ε(n)

k , k ∈ N} be two independent sequences of non-negative
integer-valued and identically distributed random variables for every n ∈ N. For n ∈ N
we define a sequence of random variables recursively:

Xn
0 = 0, Xn

k =

Xn
k−1∑
j=1

ξ
(n)
k,j + ε

(n)
k , k ∈ N.

The sequence {Xn
k k ∈ N} is called a branching process with immigration [1]. We assume

that mn = E(ξ
(n)
1,1 )2 < ∞ and E(ε

(n)
1 )2 < ∞ for all n ∈ N. The branching process with

immigration is called nearly critical if mn → 1 as n→∞.
In the papers [2]–[4] asymptotic behavior of the process Xn

[nt], t > 0 has been investi-

gated in the case mn = 1 + αd−1
n + O(d−1

n ), α ∈ R as n → ∞, where dn is a sequence of
positive numbers such that ndn → c as n → ∞. In this paper we investigate asymptotic
behavior of the random process Xn

[nt], t > 0 when ndn → ∞ as n → ∞ and prove limit
theorems for Xn

[nt], t > 0. We remark that the obtained results are different from the

results in the case mn = 1 + αn−1 + o(n−1).
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Poisson processes are known to be useful to model several random phenomena, and
the problem of estimation of Poisson intensity functions arises in many diverse areas such
as communications, meteorology, insurance, medical sciences, seismology [1, 2]. In the
present paper we do not assume any parametric form of the intensity function except
some regularity conditions, and suppose that only a single realization of the process is
available at time T . We give an extension of the results considered by Kitaeva in [3] to
the recursive algorithms. Recursive estimation is particularly useful in large sample size
since the result can be easily updated with each additional observation.

Let {ti, i = 1, N, 0 ≤ ti ≤ T} be a realization of a Poisson process having unknown
intensity function λ(·), where N is the number of points falling into a fixed interval [0, T ],

Λ(a, b) =

∫ b

a

λ(t)dt , K(1)(·) be the derivative of the function K(·) ≡ K(0)(·). The density

S(·) = λ(·)/Λ(0, T ) , that we call normalized intensity function, and its derivative at a
point t ∈ [0, T ] are estimated by the following expressions

S
(r)
N =

1

N

N∑
i=1

1

hri
K(r)

(
t− ti
hi

)
=

(
1− 1

N

)
S

(r)
N−1 +

1

NhrN
K(r)

(
t− tN
hN

)
where r = 0, 1, hn ↓ 0 is a sequence of real numbers (bandwidths), K(·) is a kernel function;

with the convention that S
(r)
0 = 0. Distinctive feature of the statistics under consideration

is due to a random sample size.
Mean-square convergence is proved in a scheme of series under unlimited increasing

of the intensity. Simulation studies are carried out to illustrate the convergence and to
compare the proposed recursive and the non-recursive estimates.
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The basic model we consider is the standard growth curve model with uniform corre-
lation structure:

Y = XBZ ′ + e, vec(e) ∼ N (0,Σ⊗ In) , Σ = σ2 ((1− ρ)Ip + ρ11′) .

Here Yn×p is a matrix of independent p-variate observations, Xn×m is an ANOVA design
matrix, Zp×r is a regression variables matrix, and en×p is a matrix of random errors.
As for the unknown parameters, Bm×r is an location parameters matrix, and σ2, ρ are
(scalar) variance parameters. The vec operator stacks elements of a matrix into a vector
column-wise.

This model has obtained increasing attention, since it allows to keep the number of
variance parameters low even in high dimensional models, and its assumptions are in
many situations close to reality. Even if estimators proposed by Žežula (see [2]) and
Ye & Wang (see [4]) seem to be quite different, they are identical. Žežula & Klein found
their marginal distributions, see [3]. We will present the joint distribution of the two
estimators and investigate simultaneous confidence regions for both variance parameters.
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On 20 January 2011 Muni Shanker Srivastava turned 75. His magnificent career in statis-
tics started in India. Muni was born in Gonda, Uttar Pradesh and graduated from Luc-
know University in India with Bachelor degree in 1955 and Master Degree in 1957. He
got his PhD from Stanford University in 1964 under the supervision of Professor Charles
Stein. In 1963 he joined the University of Toronto where he found his academic home;
from 1972 to 2001 he worked as a full professor and from 2001 he is Professor Emeritus.
After the first monographs on multivariate statistics in late 1950-ies there was a long break
in publishing new books on Multivariate Analysis. A big step forward was made in 1979
when the monograph ”An Introduction to Multivariate Statistics” by M. S. Srivastava and
C. G. Khatri came out from North Holland. This book and the following ones: Srivas-
tava & Carter (1983), Sen & Srivastava (1990) and Srivastava (2002) are on desks of any
statistician working in multivariate statistics. But these books do not cover wide range of
Muni’s research activities at all.
Sequential analysis became his first attraction after PhD studies but in early seventies he
turned his interests to the multivariate analysis. This fortunate turn resulted in the afor-
mentioned book in 1979. Beside development of asymptotic methods robustness became
another important issue in his research. In late eighties quality control theory attracted
him. Research in this area gave several principal new analytic results. In 2002 his achieve-
ments in multivariate statistics were crowned with the Gold Medal by the Statistical
Society of Canada.
What has kept Muni’s mind busy in last years? High-dimensional analysis, where the num-
ber of variables can exceed the sample size and where most of the classical test statistics
are not applicable, has become his new field of interest.
Nineteen supervised PhD dissertations, 177 published papers – these lists are still open.
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Modern biochemical analysis techniques often deliver high-dimensional observation vec-
tors, while only small sample sizes are feasible. As an example we consider a microarray
(PhyloChip) data set for comparing the bacterial community structures in the rhizosphere
of three potato cultivars grown at two sites (cf. to [4] for details).

In [3], Läuter and colleagues proposed a PC test that calculates the principal com-
ponents from the total sums and squares and cross products matrix W of the data and
carries out a test on the basis of the low-dimensional principal components. For multi-
variate normal data this yields left-spherically distributed components and hence an exact
multivariate test for the usual multivariate test statistics. Another proposal for an exact
multivariate test in this situation is the 50-50-MANOVA test by Langsrud in [1].

For extreme relations of sample size n and number of variables p (n=18 and p=2432
in the example), however, there arises a problem regarding the power. The sample size
restricts the number q of principal components enclosed in the test. But omitting essential
components may yield a loss of power.

Therefore, we use a modified test statistic

F̃ =
(
∑q
i=1 λihii) /νh

(
∑q
i=1 λigii) /νg

,

where the λi are the eigenvalues of W, hii and gii are the hypothesis and residual related
sums of squares, and νh and νg are the corresponding degrees of freedom as one would
use in a univariate test. This test statistic does no longer follow an F -distribution under
the null hypothesis, but one can find a Satterthwaite approximation and one can still
use properties of left-spherically distributed data to derive an exact test on the basis of
rotation tests as introduced by Langsrud in [2].

The power of the resulting tests is compared in the example and in simulation studies,
demonstrating the good performance of the new test in this high-dimensional setting.
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One of the common problems in insurance mathematics is that we usually do not see
the actual loss variable but certain truncated version of it: the claims payments are limited
by the sum insured, reinsurance treaties limit the actual claim size for initial insurer, also
(fixed amount) deductibles set limits for policy holders, etc. In all these cases a function
called limited expected value function, defined by

E[X;x] = Emin(X,x),

where X is a random variable (claim size), plays an important role. There are many well-
known characteristics in insurance that are calculated using this function, which motivated
us to study this topic more closely. We reveal some essential properties of this function
and describe some important practical applications where it is used.

We also introduce the method of limited expected value function for measuring the
goodness of fit between empirical and theoretical distributions. This is one of the many
uses of the limited expected value function and it suits particularly well to the insurance
data as it can also take into account censored data (if necessary). Also, this method
can be used as an alternative or additional tool in case the data is complex and other
goodness of fit tests do not give reliable results. The main disadvantage of this method
is that the behavior of corresponding test statistic is not thoroughly studied, there are
no certain criteria to tell us when the value of this statistic is good enough to say that
a proposed distribution fits empirical data well. This problem is of our special interest,
several simulations with different distributions are carried out to find out the reference
values.

This research is supported by Estonian Science Foundation Grant No 7313.
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Estimation of certain loss distribution and analyzing its properties is a key issue in
several finance-mathematical and actuarial applications. A special interest usually lies on
the tail of the loss distribution, which allows us to answer important questions related
to solvency of the insurer. It is common to apply the tools of extreme value theory
and generalized Pareto distribution in problems related to heavy-tailed data (see, e.g.,
Coles, 2001, McNeil et al., 2005), this also provides conservative estimates for certain risk
measures such as value at risk and expected shortfall.

Our main goal is to study third party liability claims data obtained from Estonian
Traffic Insurance Fund (ETIF) where the observation period is one year (from mid 2006
to mid 2007). The data is quite typical for insurance claims containing very many obser-
vations and being heavy-tailed. In our approach the fitting consists of two parts: for main
part of the distribution we use log-normal fit (which was the most suitable based on our
previous studies) and generalized Pareto distribution is used for the tail. Main emphasis
of the fitting techniques is on the proper threshold selection. We examine a wide range
of thresholds and seek for stability of parameter estimates, compare the mean residual
life plots and study the behaviour of risk measures at fixed tresholds. Additionally we
compare our model with composite lognormal-Pareto model in respect of risk measures
proposed by Cooray and Ananda (2005).

The work is supported by Estonian Science Foundation Grant No 7313.
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In a linear model Xβ for the mean vector of a multivariate random variable Y , es-
timable functions of β are customarily defined as those functions P ′β for which unbiased
linear estimators exist. Testable hypotheses about β, on the other hand, are linear rela-
tions that restrict the model.

Statistical computing packages, like SAS and ANOVA programs in R, refuse to deal
with non-estimable functions. That an estimator is not unbiased doesn’t seem to be so
fatal a flaw that we should be forbidden even to look at it. Then why is non-estimability
so bad?

By examining the relation between estimability and restrictions, this paper will show
that the mean vector carries no information at all about non-estimable functions, and that
therefore any statement about a non-estimable function based on the mean vector is false.
As part of this development, useful representations of linear restrictions on affine sets are
shown.
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In this talk, we consider several generalizations of the popular Ward’s method for
agglomerative hierarchical clustering. Our work was motivated by clustering software,
such as the R function hclust, which accepts a distance matrix as input and applies
Ward’s definition of inter-cluster distance to produce a clustering. The standard version
of Ward’s method uses squared Euclidean distance to form the distance matrix. We explore
the properties and effect on the clustering of using other definitions of distance, such as the
Minkowski distance and powers of the Minkowski distance. We explore the effect of these
on several examples and find that using powers of the Manhattan metric is particularly
effective.
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The aggregation of the first order autoregressive models, AR(1), with random coeffi-
cients is investigated. We study two cases of the underlying model:

(i) autoregressive sequence on Z;

(ii) autoregressive field on Z2 with various configurations of neighbors.

Asymptotics of the spectral density of the resulting random process or field is studied. We
show that, depending on the law of the AR coefficients, the aggregated process/field can
exhibit short or long memory structure.
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The users of official statistics often require that sample-based estimates satisfy certain
restrictions. In the domain’s case it is required that the estimates of domain totals sum
up to the population total or to its estimate. For example, in time domains, quarterly
estimates have to sum up to the yearly total. The relationships holding for the true popu-
lation parameters do not necessarily hold for the respective estimates. This inconsistency
of estimates is annoying for statistics users. On the other hand, known relationships be-
tween population parameters is a kind of auxiliary information. Involving this information
into estimation process presumably improves estimates. Our goal is to define consistent
domain estimators that are more accurate than the initial inconsistent domain estimators.

One solution to the problem of finding estimates under restrictions is the general re-
striction estimator (GR) proposed by Knottnerus (2003). His estimator is based on the
unbiased initial estimators and is unbiased itself. The advantage of the GR estimator is the
variance minimizing property in a class of linear estimators. Sõstra (2007) has developed
the GR estimator for estimating domain totals under summation restriction. Optimality
property of the domain GR estimator is studied in Sõstra and Traat (2009). In all these
works, the unbiasedness or asymptotic unbiasedness of initial estimators is assumed.

It is well known that there are many useful estimators that are biased. For example,
the model-based small area estimators are design-biased. The synthetic estimator can be
biased on the domain level. Even the widely used GREG estimator is only asymptotically
unbiased. In this thesis we will allow the vector of initial estimators θ̂ to be biased, and
will construct three new restriction estimators, based on the biased initial estimators:

θ̂GR1 = (I−KR)(θ̂ − b),

θ̂GR2 = (I−K∗R)θ̂,

θ̂GR3 = (I−K∗R)(θ̂ − b),

where K = VR′(RVR′)−1, K∗ = MR′(RMR′)−1, V and M are accordingly the covari-
ance and the MSE matrices of the initial estimator-vector; b is its bias.
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The objective of this paper is to combine shift and non-shift invariance in multilevel
models. The random factors are described via their covariance matrices and it is shown
that the two types of invariance imply two specific structures for the covariance matrices:
block circular Toeplitz and block compound symmetry. Useful results are obtained for
the spectrum of such permutation invariant covariance matrices and model reparameter-
ization is performed by putting restrictions on the spectrum. Spectral decomposition is
exploited to derive explicit maximum likelihood estimators of the variance and covariance
components.
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The commodities suffer from shocks that affect supply and demand, which destabilizes
the market, and makes it difficult to predict the behavior of the series. Therefore we have
tried to model the series using generalized autoregressive conditional heteroscedasticity
(GARCH) [1] to study this behavior.

In this paper the statistical behavior of daily returns of coffee prices ranging from
March 1, 1990 until October 28, 2010 is studied. The assumption of linearity, through an
unusual test, the test of Brock, Dechert and Scheinkman, (BDS) [2] is reviewed.

The result reveals that the series does not meet the independence criteria and identical
distribution. The errors do not follow a normal distribution so it would be difficult to
forecast, and would also reject the theory of efficient markets, for which it would be
necessary to compare this model with others to compare the results.
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Our framework is the linear regression model

y = Xβ + Zγ + ε, ε ∼ N(0, σ2In), (1)

where X is an n × p matrix of explanatory variables that we want to keep in the model
on theoretical or other grounds. An n ×m matrix Z contains m additional explanatory
variables which we add in the model only if they are supposed to improve estimation of
β. To minimize the mean square error of estimation, a balance must be attained between
the bias due to omitted variables and the variance due to parameter estimation. Magnus
et al. (2010) presented a technique of averaging least squares estimators over models such
that the resulting estimator can be presented as a shrinkage estimator. Among this type
of estimators we wish to find those that have good risk profile, i.e. the risk is close to the
efficiency bound. In general, shrinkage estimators have better risk profile over Post Model
Selection (PMS) estimators, and they avoid an unbounded risk.

Shrinkage estimators are computationally superior over the PMS estimators and the
model averaging estimators which require estimation of models weights. Computing time
of shrinkage estimators increases only linearly with m, the number of auxiliary regressors,
while computing time of the PMS estimators is of order 2m. Thus the shrinkage technique
can be easily applied to large data sets when the number of auxiliary regressors is large.
We apply the technique on hip fracture patients data to compare treatment costs between
hospital districts in Finland.
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The Cosmic Microwave Background (CMB) consists of photons that began to travel
freely when the Universe was approximately 379000 years old. The CMB is completely
characterised by its intensity tensor. A CMB detector measures the CMB’s intensity
tensor P that depends on the direction of observations, n. Mathematically, n is a point
on the sphere S2, while P (n) is a section of the special tensor bundle over S2, namely, the
tensor product TS2 ⊗ T ∗S2 of the tangent bundle TS2 by the cotangent bundle T ∗S2.

In cosmological models, it is usually assumed that the CMB is a single realisation of
a random field. In other words, P (n) is a random section of the bundle TS2 ⊗ T ∗S2.
A variant of the rigourous mathematical theory of random sections of vector and tensor
bundles was built by Malyarenko [1].

After performing primary statistical analysis of raw CMB data we obtain a pixel map
P (nj). The next step is to perform statistical tests in order to accept or reject the following
standard cosmological hypothesis:

P (n) is an isotropic Gaussian random field.
Until now, almost all performed tests used only a part of information that contains in

the intensity tensor, namely, its trace, the total intensity I(nj).
In our presentation, we will discuss how to use the complete intensity tensor map in

the statistical tests.
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Proposed algorithms of MPLS [1] networks performance estimation allows to calculate
with given accuracy following network characteristics:

• the number of routers in the current network work cycle;

• network topology (the number of senders, routers, connectivity, etc.);

• load (in) for each channel;

• performance for each of the routers;

• size of the queues at routers in a given network;

• total number of packets passing through the router in a session;

• the total number of lost packets on each router for a session;

• percentage of packet loss for each router in a session;

• average packet delay at each router for a session;

• total number of packets of each stream in the past for each of the switched paths for
a session;

• percentage of packet loss for each thread in the past for each of the switched paths
for a session.

To find the shortest path from sender to receiver, an algorithm is proposed based on use
of elements of Dijkstra algorithm for finding the minimum distance in a weighted graph.
As a result of the algorithm, we obtain the path length (length, the sum of all weights on
this way). The path length is equal to 0 if the initial vertex is finite and equal to −1 if the
path does not exist. For service organization streams of packets from certain users in the
MPLS network can be allocated separate resources [2]. MPLS network operator, to analyze
the capabilities of its network, to serve the above-mentioned flow parameters to provide
guaranteed service. An example of application of the developed methods and algorithms to
calculate the network routing and traffic optimization is given. As an example, we calculate
now the best way for dynamic routing for a different set of restrictions on routing. In the
case where there are no requirements flow network bandwidth, length is unlimited, that
is the only requirement for routing is the absence of cycles, then we use the function

asd,l =

{
1, when (s, d) routers are connected by the edge l,

0, otherwise.

To determine the parameters of quality of service it is necessary to classify application
traffic by the following characteristics: the relative predictability of the data transmission
speed, the sensitivity of traffic to the packet delay, traffic sensitivity to losses and distor-
tions of the package [3]. Three criteria for classification applications correspond to three
groups of parameters used in defining and specifying the required quality of service: the
parameters of bandwidth, delay settings and parameters of transmission reliability.
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When models with the same structure correspond to the treatments of a base design
we have a structured family of models. The joint analysis of such models will enable the
study of the action of the factors in the base design on the models on the family.

When the models in the family are mixed with the same variance components the
family will be isomorphic. Then the study of the actions of the factors in the base design
will be centered on the estimable vectors of the models in the family.

We will consider such a study for isomorphic families of models with Commutative
Orthogonal Block Structure (COBS). The family of variance-covariance matrices for such
models will be

V =


m∑
j=1

γjQj


where the Q1, . . .Qm are pairwise orthogonal orthogonal projection matrices such that
m∑
j=1

Qj = In, so the model will have Orthogonal Block Structure. Moreover we will

assume that the orthogonal projection matrix on the space spanned by the mean vectors
commute with Q1, . . .Qm.
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The nonparametric classification of data from a subspace of continuous functions
C([0, 1]) will be discussed. Special attention will be paid to depth-based classification
rule and its possible generalizations. The decision rule is related to the concept of data
depth, which is in this case a functional

D : C([0, 1])→ [0, 1].

Depth is a measure of centrality of an observation with respect to a data set or a distribu-
tion. Recently several authors proposed their notions of depth for functional data (Fraiman
and Muniz [2], López-Pintado and Romo [5]). These depth functionals are invariant with
respect to a domain permutation

T : C([0, 1])→ C([0, 1]) : x(t) 7→ x(φ(t)),

where φ is a bijection of [0, 1] and t ∈ [0, 1]. Thus, none of the established depth functionals
is able do deal with the shape of functions.

This problem will be demonstrated in a functional classification task. A new class of
depth functionals, K-band depths for K ∈ N will be utilized in order to handle it. The
simplicial depth described by Liu [4] along with Fraiman-Muniz method are employed
to involve derivatives into depth computation. The performance of the new approach is
compared to similar results obtained by Cuveas et al. [1] in a simulation study of functional
data supervised classification. We show that proper derivative using in combination with
DD-plot (Depth-Depth plot) techniques proposed by Li et al. [3] is a powerful tool not
only for the classification of functional observations.
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The extended growth curve model with two terms and a linearly structured covariance
matrix is considered. In general there is no problem to estimate the covariance matrix
when it is completely unknown. However, problems arise when one has to take into
account that there exists a structure generated by a few number of parameters. In this
paper an estimation procedure that handles linearly structured covariance matrices is
proposed. The idea is first to estimate the covariance matrix when it should be used to
define an inner product in a regression space and thereafter re-estimate it when it should
be interpreted as a dispersion matrix. This idea is exploited by decomposing the residual
space, the orthogonal complement to the design space, into three orthogonal subspaces.
Studying residuals obtained from projections of observations on these subspaces yields
explicit consistent estimators of the covariance matrix. An explicit consistent estimator
of the mean is also proposed and numerical examples are given.
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General formulas of the asymptotic cumulants of a studentized parameter estimator
are given up to the fourth order with the added higher-order asymptotic variance. Using
the sample counterparts of the asymptotic cumulants, formulas for the Cornish-Fisher
expansions with the third-order accuracy are obtained. Some new methods of monotonic
transformations of the studentized estimator are presented. In addition, similar transfor-
mations of a fixed normal deviate are proposed up to the same order with some asymptotic
comparisons to the transformations of the studentized estimator. Applications to the mean
and the binomial proportion are shown with a numerical illustration for estimation of the
proportion.
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In this talk, we consider profile analysis of several groups where subvectors of the mean
vectors are equal. This leads to a profile analysis in a growth curve model. The likelihood
ratio statistics are given for the three hypotheses known in literature as parallelism, level
hypothesis and flatness. Furthermore, exact and asymptotic distributions are given in the
relevant cases.
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Let P be a probability distribution on a support with N cells arranged, for simplicity,
in a table C = (Ci,j), where i = 1 . . . ,K, j = 1, . . . L. Observation counts are described by
N = (Ni,j), or equivalently, by the empirical probability distribution P = (P i,j = Ni,j/n),
where n =

∑
i,j Ni,j . Rearranging the rows in order to have a N -dimensional vector, N is

multinomially distributed.
This talk is concerned with the estimation of P = (Pi,j) with a special interest when

the sample size n is small. Moreover, having in mind a few applications, some partial
knowledge of the distribution might be available and we should integrate this into the
estimation. We will assume the knowledge of the marginal distribution of P, that is, for
some given Πi, i = 1, . . . ,K, Πi =

∑L
j=1 Pi,j . The general idea in constructing estimators

is to adapt polynomial smoothing to this framework.
To avoid computational difficulties with border and edge effects, we consider a replica-

tion of the tables C, P and N, enlarging them by reflecting cells with respect to each one of
the four borders and edges. Defining the appropriate matrices in the usual way, local poly-

nomials can be represented as the minimizers ofHi,j =
(−→

P −Xi,jβi,j

)t
Wi,j

(−→
P −Xi,jβi,j

)
,

for each i and j. This procedure does not integrate knowledge of the marginal distribu-
tion. Moreover, it may produce non-acceptable estimates, especially when n is small, as
is our case of interest. We propose to correct this in two different ways. The first one is
to introduce in the minimization problem a constraint, forcing the solution to agree with
the marginal distribution:

minimize

L∑
`=1

Hi,`

subject to
∑L
j=1 β0,i,j = Πi, i = 1, . . . ,K.

The second one changes the minimizing function by considering relative errors:

minimizeH∗i =

L∑
`=1

1

β0,i,`

(−→
P −Xi,`βi,`

)t
Wi,`

(−→
P −Xi,`βi,`

)
,

subject to

L∑
j=1

β0,i,j = Πi, i = 1, . . . ,K.

We characterize the obtained estimators, describe their behaviour and relations, and
present some numerical results showing their performance. Finally, we note that this
approach is easily extended to higher dimensional supports.
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Semiparametric families are families that have both a real parameter and a parameter
that is itself a distribution. A number of semiparametric parametric families suitable for
lifetime data in survival or reliability are introduced: scale, power, frailty (proportional
hazards), age, moment, and others. Interesting results on stochastic orderings are obtained
for these families. The coincidence of two families provides a characterization of the
underlying distribution. Some of the characterization results provide a rationale for the
use of certain families. In this talk we provide an overview of these semiparametric families,
and present several characterizations.

This work is a joint effort with Albert W. Marshall.
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Majorization is a partial order that surprisingly arises naturally in economics, chem-
istry, physics, political science, and more. Of particular interest are applications in prob-
ability and statistics. In this talk, I will provide some historical origins as they arise in
applications, present some of the key theorems, and list examples in different fields.
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The Stieltjes transform will be used to obtain asymptotics for the normalized spectral
function of a quadratic form AA′ + 1

nXX
′, where A is non-random matrix and X ∼

Np,n(0,Σ,Ψ), where p and n are respectively - the number of variables and observations,
such that p

n → c > 0.
The density will be derived explicitly for the case A = 0 and X ∼ Np,n(0, σ2I, I).
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In this talk we present the techniques for approximating unknown distribution function
with a well-known and well-studied distribution function. The development of approxima-
tion technique is closely related with development of matrix algebra. We also present some
newer results of matrix algebra. For more detailed presentation of this kind matrix alge-
bra see [1] , [3], [2], for example. Some results on Edgeworth expansions are presented in
[4] where a two-dimensional distribution function is approximated by means of the Edge-
worth type expansion. In this presentation we generalize the Edgeworth expansion to the
three-dimensional case. This presentation is supported by Estonian Science Foundation
Grant 7656.
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2 McGill University, Montréal, Canada, email: styan@math.mcgill.ca

Keywords: IWMS-series.

We briefly describe the development of the International Workshop on Matrices and
Statistics (IWMS) series. The first IWMS was held in Tampere, Finland, 6–8 August
1990, and the 20th IWMS is being held in Tartu, Estonia, 26 June – 1 July 2011. An
illustrated summary of the talk is presented in the end of this Abstract volume.
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This paper derives the matrix-variate joint distribution of an arbitrary non-singular
linear transformation of Studentized residuals from multivariate regression with elliptically
distributed errors. The joint distributions of the major commonly utilized Studentized
versions of (multivariate) regression residuals are obtained as special cases of the matrix-
variate distribution introduced in the paper. Applications in regression diagnostics and
testing general linear hypothesis are briefly discussed.
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In the talk we shall discuss long memory phenomenon of multidimensional time series.
We consider an operator fractional Brownian motion with values in a finite or infinite
dimensional Hilbert space defined via operator-valued Hurst exponent. We prove that
this process is a limiting one for polygonal lines constructed from partial sums of time
series having space varying long memory. The talk is based on the paper [1].
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We give an overview presentation of multivariate linear normal models theory and
applications. In particular profile analysis, partial least squares and spatio-temporal mod-
els are considered. Moreover, the Growth Curve model, sum of profiles model and the
extended growth curve model will be discussed.
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1University of Tartu, Stockholm University, email: Tatjana.vonRosen@stat.su.se,
2University of Tartu, Estonia, email: Ene.Kaarik@ut.ee

Keywords: high-dimensional data, profile analysis, selection of variables.

Within the last decade, the development of antigen chip technology has enabled the
simultaneous measurement of thousands of peptides in biological samples. Finding sets
of peptides which can uniquely characterize TB patients and healthy individuals, can, for
example, help to develop better diagnostic tests and to identify candidate vaccine antigens.
In this work we use the procedure for variables selection which is applicable in a high-
dimensional setting worked out by Läuter et al (2009) and new identification technique of
control peptides that gives high mean response and low coefficient of variation across all
replicates (Ngo et al, 2009).

Using profile analysis (of sets of peptides), as the next step, will facilitate the study of
behavior of the immune system of vaccinated individuals over time.
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Reliability has been quantified in a simple Gauss-Markov Model (GMM) by Baarda
[1] for the application to geodetic networks as the potential to detect outliers – with a
specified significance and power – by testing the Least-Squares residuals for their zero
expectation property after an adjustment assuming “no outliers”. It was shown that,
under homo-scedastic conditions, the so-called “redundancy numbers” could very well
serve as indicators for the “local reliability” of an (individual) observation. In contrast,
the maximum effect of any undetectible outlier on the estimated parameters would indicate
“global reliability.”

This concept has been extended successfully to the case of correlated observations by
Schaffrin [3] quite a while ago. However, no attempt has been made so far to extend
Baarda’s results to the (homoscedastic) Errors-in-Variables (EIV) Model for which Golub
and van Loan [2] had found their – now famous – algorithm to generate the Total Least-
Squares (TLS) solution, together with all the residuals. More recently, this algorithm
has been generalized by Schaffrin and Wieser [4] to the case where a truly – not just
element-wise – Weighted TLS solution can be computed when the covariance matrix has
the structure of a Kronecker-Zehfuss product.

Here, an attempt will be made to define reliability measures within such an EIV Model,
in analogy to Baarda’s original approach.
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We will address two inferential aspects of noise multiplied magnitude microdata. First,
in the context of disclosure risk assessment of tabular magnitude data, we study the conse-
quences of noise multiplication of original microdata when an intruder tries to speculate a
target unit’s value in a cell based on knowledge of the noise perturbed cell total and values
of some original units within the cell. Second, we discuss statistical methods to infer about
a quantile of a microdata set based on their noise perturbed values. An application with
income data will be presented.
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In this paper, we propose a test for testing the equality of mean vectors of two
groups with unequal covariance matrices based on N1 and N2 independently distributed
p-dimensional observation vectors. This test is invariant under the transformation of the
observation vectors by any p × p diagonal matrix. There are no tests available in the
literature that has this invariance property.

The asymptotic distribution of the test statistics is given as (N1, N2, p) → ∞, where
(N1/N2)→ k ∈ (0,∞) but (N1/p) and (N2/p) may go to zero or infinity.
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We study various properties of n×n Cäıssan magic squares. A magic square is Cäıssan
whenever it is pandiagonal and knight-Nasik, so that all paths of length n by a chess bishop
are magic (pandiagonal) and by a (regular) chess knight are magic (CSP2-magic).

Following the seminal 1881 article [4] by “Ursus” in The Queen, we show that 4-ply
magic matrices, or equivalently magic matrices with the “alternate-couplets” property,
have rank at most equal to 3. We also show that an n × n magic matrix M with rank 3
and index 1 is EP if and only if M2 is symmetric. We identify and study 46080 Cäıssan
beauties—Cäıssan magic squares which are also CSP3-magic; a CSP3-path is made by a
special knight that leaps over 3 instead of 2 squares. We find that just 192 of these Cäıssan
beauties are EP. We generalize an algorithm given by Cavendish [2:(1894)] for generating
Cäıssan beauties and find these are all EP. We also study the n-queens problem first posed
with n = 8 by Bezzel [1:(1848)] and the Firth–Zukertort “magic chess board” due to Firth
[3:(1887)].

An extensive annotated and illustrated bibliography of over 300 items, many with
hyperlinks, ends our report. We give special attention to items by (or connected with)
“Ursus”: Henry James Kesson (b. c. 1844), Andrew Hollingworth Frost (1819–1907),
Charles Planck (1856–1935), and Pavle Bidev (1912–1988). We have tried to illustrate
our findings as much as possible, and whenever feasible with images of postage stamps or
other philatelic items.
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As an asset is traded at fair value, its varying price trace out an interesting time series
reflecting in a general way the asset’s value and underlying economic activites [1]. This
time series exhibit price jumps, clustering and a host of other properties [3] not usually
captured by log-normal models [2].

Interestingly, Lévy processes offer the possibility of distinguishing jumps, diffusion,
drift [3] and the laxity to answer questions on frequency, continuity, etc. An important
feature of Normal Inverse Gaussian-Lévy (NIG-Lévy) model is its path richness i.e. it can
model so many small jumps such that it does not need a Brownian motion component to
capture these. Hence limitations arising from Brownian motion based models are almost
eliminated. Secondly, the unique characteristics listed above are reflected in the Lévy
triplet. These are easily introduced in the modeling picture by moments method i.e. just
matching the theoretical and empirical descriptive statistics and extracting parameters for
NIG since NIG has a well-behaved characteristic function.

We use a simple R-code to reproduce the price trajectories of 10 Estonian companies.
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[3] Teneng, D. (2010). Path properties of Lévy processes In: Proceedings of First Interna-
tional Scientific Conference of Students and Young Scientists Theoretical and Applied
Aspects of Cybernetics, Feb 21-25, Kiev-Ukraine, 207–210.

74



On exact testing problems in linear models with two
variance-covariance components

Julia Volaufova and Lynn R. LaMotte

Louisiana State University Health Sciences Center – New Orleans

Keywords: accuracy of p-value, approximate test, exact test, fixed effects, variance com-
ponents.

Linear models with variance-covariance components are used in a wide variety of ap-
plications. A special case of models with two variance-covariance components has been
studied extensively for decades. Most often the objective of inference is testing linear
hypotheses about the mean of the response. Even assuming multivariate normality, it
is not clear what test to recommend except in a few special settings, such as balanced
or orthogonal designs. Here we shall investigate a simultaneous hypothesis on the mean
and on the between-subject variance component (see also Crainiceanu & Ruppert (2004))
and in that setting special cases of hypotheses will be studied. Some special cases will be
mentioned as well. We shall illustrate some statistical properties of test procedures, such
as accuracy of p-values and powers of approximate and exact tests obtained by simulation.
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Probabilistic population forecast is based on stochastic population renewal using fore-
casts of fertility and mortality. Fitting the suitable family of distributions for modelling
the changes in fertility distribution is the first step. Most commonly used distributions are
beta distribution, gamma distribution and Hadwiger distribution. The beta distribution
and mixtures of beta distributions show excellent fit to the one year age-specific fertility
rate distributions. The second step is to estimate the parameters of the distribution of
mortality. The fertility model and mortality model are then used in simulation of future
fertility and mortality to obtain forecasts of the population. The method is demonstrated
using Estonian data for the period 1991 - 2009.
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The Growth Curve Model was introduced by Potthoff & Roy (1964). The maximum
likelihood estimators of the parameters in the model have been obtained. The study of the
properties of the estimators has taken place over many years. However, the distributions
of the residuals are still unknown and are interesting to consider from both, a theoretical
and a practical point of view. In this paper, the approximation of the distribution of the
residuals in the Growth Curve Model is derived via Edgeworth expansions and by aid of
bootstrap methodology. A simulation study is included to verify the results, and further
to compare the MLE and least square estimator in the growth curve model.
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In the literature, complementary matrices have been studied because of their im-
portance when analyzing over-parametrized linear statistical models. In this talk, the
somewhat more general concept of weak complementarity is considered. Observing
the fact that the usual F-test in ANOVA is applicable only for “testable” hypotheses,
that in practice however - e.g. in non-orthogonal settings or incomplete layouts - non-
testable hypotheses can be of importance, a variant of the F-test is discussed that
allows to decide for significant deviations also in non-testable situations and to detect
non-testability, too.
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The ordinary least squares (OLS) estimator is often used to estimate the parameters in
linear regression models. Multicollinearity among the columns of the explanatory variables
is known to cause severe distortion of the OLS estimates of the parameters. Therefore,
alternative methods to solve the multicollinearity problem are preferred. One of the meth-
ods for solving the multicollinearity problem is through the use of non-sample information
on the parameters which results in the restricted estimators. This study provides the
results on the performance of the restricted two parameter estimator (see [3]), which in-
cludes the restricted ridge (see [1]), restricted Liu and restricted shrunken estimators as
special cases, over the restricted least squares and the OLS estimators under the matrix
mean square error (MSE) criterion when the restrictions are not correct and when they
are correct. Theoretical results are evaluated via a numerical example based on Webster
et al. [4] and the behavior of the restricted estimators is examined by the surface plot of
the scalar MSE on the data set.
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A generalized multivariate analysis of variance (GMANOVA) model proposed by Pot-
thoff and Roy [1] is one of statistical models suitable for a longitudinal data. The matrix
form of GMANOVA model is given by

Y ∼ Nn×p(AΞX ′,Σ⊗ In),

where Y is an n×p response variables matrix, A is an n×k between-individuals explanatory
variables matrix with the full rank k (< n), X is a p × q within-individuals explanatory
variables matrix with the full rank q (≤ p), and Ξ is a k×q unknown regression coefficients
matrix. It is a known fact that a maximum likelihood estimator (MLE) of regression
coefficients Ξ in the GMANOVA model is defined as

Ξ̂ML = (A′A)−1A′Y S−1X(X ′S−1X)−1,

where S = Y ′{In−A(A′A)−1A′}Y/(n−k). However, if the dimension p is larger than the
sample size n, the MLE of Ξ cannot be defined because the inverse matrix of S does not
exist then. Hence, we avoid such an undesirable situation by the following three methods:

(1) We ignore S−1. This is corresponding to the least square estimator (LS) of Ξ, i.e.,

Ξ̂LS = (A′A)−1A′Y X(X ′X)−1.

(2) We replace S−1 with the inverse matrix of the ridge type estimator of S, i.e.,

Ξ̂R = (A′A)−1A′Y S−1
λ X(X ′S−1

λ X)−1,

where Sλ = S + λIp/(n − k) and λ = tr(S)/
√
p. This ridge type estimator of S

proposed by Srivastava and Kubokawa [2].

(3) We replace S−1 with the Moore-Penrose inverse of S, i.e.,

Ξ̂MP = (A′A)−1A′Y S+X(X ′S+X)−1.

An aim of this paper is to compare with above three estimators theoretically and numer-
ically when the dimension p is larger than the sample size n.
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The First Tartu Conference on Multivariate Statistics was held 34 years ago, 28-30 Septem-
ber 1977, as a Soviet Union wide conference with participants from various parts of the
USSR. The Principal Speakers at the Conference were Sergei A. Aivazjan (Moscow), Yuri
K. Belyaev (Moscow), Ene-Margit Tiit and Liina-Mai Tooding (Tartu), who are all still
active in research today. The Conference was held 56 km south from Tartu at Kääriku
Recreation Centre of Tartu University. Tartu conferences became the only regular event
on multivariate statistics and data analysis in the Soviet Union.

The Second Conference was organized four years later, in 1981, at Sangaste Manor House.
The Programme Committee was chaired by Academician Yuri V. Prohorov and the Keynote
Lecture was again delivered by Professor Sergei A. Aivazjan. On Plenary sessions ten
Invited Lectures were presented. Among the Invited Lecturers were Yuri K. Belyaev,
Vladimir N. Vapnik, Ene-Margit Tiit, Liina-Mai Tooding and Vasili V. Nalimov.

The Third Conference was held in 1985, again at Kääriku. Fifteen Invited Lectures were
delivered. The list of Invited Speakers included Sergei A. Aivazjan, Yuri K. Beljajev, Vy-
acheslav L. Girko, Igor G. Žurbenko, Yuri N. Blagoveschenski, Lev D. Meshalkin, Šarunas
Raudis, Dmitri S. Silvestrov, Ene-Margit Tiit and Boris V. Gnedenko.

Photo 1: From left: J. Reiljan, Y. N. Blagoveschenski, B. V. Gnedenko, L. G. Afanasyeva,
L. D Meschalkin (1985).
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The Fourth Conference, in 1989, was the last in the series of the Soviet Union wide con-
ferences. It was again organized at Kääriku. Among invited Speakers were Alexander V.
Nagaev, V. V. Feodorov, Vladimir V. Anissimov, Vyacheslav L. Girko, Taivo Arak, Do-
natas Surgailis, Šarunas Raudis, Boris G. Mirkin. All the Soviet Union wide conferences
were attended by more than a hundred participants, and there was always tight competi-
tion to have your talk included into the program. For the first four conferences Professor
Sergei A. Aivazjan was the main organizer in Moscow, while the local organization in
Tartu was led by Ene-Margit Tiit.

The V Tartu Conference on Multivariate Statistics was the first international conference
in the series. It had taken longer than four years to organise this conference, now at
international level. It was held 23-28 May 1994 jointly with the 3rd International Workshop
”Matrices in Statistics”. About 70 participants from 18 countries travelled to Tartu where
the Conference was opened. The following days were spent at the picturesque village of
Pühajärve. The Keynote Speaker, Professor C.Radhakrishna Rao, found the atmosphere
”friendly and stimulative”. The creative atmosphere was enhanced by Invited Speakers
Kai-Tai Fang, Yasunori Fujikoshi, Ingram Olkin and George P. H. Styan. The Conference
was followed by The 3rd International Workshop ”Matrices in Statistics”, the general
organiser of which was Professor George P. H. Styan.

Photo 2: E.-M.Tiit at the Opening Section (1994).
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Photo 3: I. Olkin giving a talk (1994).

Photo 4: I. Olkin giving a talk (1994).
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Photo 5: From left: Y. Fujikoshi, Mrs. C. R. Rao, C. R. Rao (1994).

Photo 6: From left: T. Kollo, K.-T. Fang, D. v. Rosen (1994).
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Photo 7: From left: G. P. H. Styan, H. J. Werner, E. I. Im, H. Neudecker, S. Liu (1994).

The VI Tartu Conference on Multivariate Statistics was held in 1999 in Tartu, as a satellite
meeting of the 52nd Session of the International Statistical Institute in Helsinki. The stim-
ulating working atmosphere at the conference was created by the honourable Keynote Lec-
turer Theodore W. Anderson and the distinguished Invited Speakers T. Durbin, Kai-Tai
Fang, Søren Johansen, Jürgen Läuter, Heinz Neudecker, Muni S. Srivastava and Helmut
Strasser.

The VII Conference was held in Tartu, 7-12 August 2003, as a Satellite Meeting of ISI
54th Session in Berlin. This time the Keynote Speakers were Professors Narayanaswamy
Balakrishnan and Barry Arnold. Excellent Invited Lectures were given by Boris Mirkin,
Akimishi Takemura, Steen Andersson, Muni S. Srivastava, Hannu Oja and Gad Nathan.
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Photo 8: M. S. Srivastava (2003). Photo 9: B. Arnold (standing) and N. Bal-
akrishnan (2007).

The previous VIII Tartu Conference was held jointly with The VI Conference on Mul-
tivariate Distributions with Fixed Marginals, 26-29 June 2007 under the auspices of
the Bernoulli Society. The Keynote Speakers were Professors Muni S. Srivastava and
Narayanaswamy Balakrishnan. The list of Invited Speakers included Michael Perlman,
Nikolai Kolev, Peter E. Jupp, Steen Andersson, Christian Genest, Lennart Bondesson and
Ludger Rüschendorf.

Programme Committee wishes all of you fruitful ideas and enjoyable time in Tartu.

Tõnu Kollo
Vice-Chair of the Programme Committee
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Abstract

We present a short history of the International Workshop on Matrices and Statistics (IWMS). The first
IWMS was held in Tampere, Finland, in 1990, and the Workshop this year, the 20th IWMS, is being
held in Tartu, Estonia, 27–30 June 2011. We have established an open-access website for the IWMS at
the University of Tampere: http://mtl.uta.fi/iwms/ where we plan to put all associated reports and
photographs of the IWMS from 1990 onwards, including those published in Image: The Bulletin of the
International Linear Algebra Society.

The first workshop in the “International Workshop on Matrices and Statistics” (IWMS)
series took place at the University of Tampere in Tampere, Finland, 6–8 August 1990.
This workshop was organized by a local committee from the Statistics Unit of the De-
partment of Mathematical Sciences at the University of Tampere. The key persons in the
organizing committee were Pentti Huuhtanen, Erkki Liski, Tapio Nummi, Tarmo Pukkila,
Simo Puntanen, and George P. H. Styan. There was no idea at that time that this would
be the beginning of an almost annual series of meetings. This first IWMS was actually
called “The International Workshop on Linear Models, Experimental Designs, and Re-
lated Matrix Theory”. Since 1990 the name has changed twice, and in 1998 the IWMS
became the “International Workshop on Matrices and Statistics”, following a suggestion
by C. Radhakrishna Rao.

In 1990 in Tampere there were 98 participants from 18 different countries. The Keynote
Address in 1990 was given by C. Radhakrishna Rao. The invited speakers were

Jerzy K. Baksalary
R. Dennis Cook
Yadolah Dodge
Shanti S. Gupta

Sujit Kumar Mitra
Seppo Mustonen
Heinz Neudecker
Ingram Olkin

Friedrich Pukelsheim
Jagdish N. Srivastava
George P. H. Styan

The organizers of the group meetings were
Jerzy K. Baksalary
Tadeusz Caliński
R. Dennis Cook,
R. William Farebrother
Yasunori Fujikoshi
T. P. Hettmansperger

Sanpei Kageyama
Jürgen Kleffe
Sujit Kumar Mitra
Seppo Mustonen
Friedrich Pukelsheim
Jorma Rissanen

Kirti R. Shah
George P. H. Styan
Götz Trenkler
Song-Gui Wang
Haruo Yanai

Many of these persons have also been active participants in later workshops. George P.
H. Styan has missed only one IWMS in 1990–2010 and thereby has the highest score in
the attended IWMSs.

The following is an up-to-date version of the aims of the IWMS:

The purpose of the IWMS is to stimulate research and, in an informal setting,
to foster the interaction of researchers in the interface between statistics and
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matrix theory. The Workshop will provide a forum through which statisticians
may be better informed of the latest developments and newest techniques in
linear algebra and matrix theory and may exchange ideas with researchers from
a wide variety of countries.

Quite soon after the 2nd IWMS in Auckland, New Zealand, in 1992, the organizing sys-
tem for the IWMS found its form as two committees: International and Local. The Inter-
national Organizing Committee (IOC) for several years comprised R. William Farebrother
(UK), Simo Puntanen (Finland), George P. H. Styan (Canada), Hans Joachim Werner
(Germany). Recently, also S. Ejaz Ahmed (Canada), Jeffrey J. Hunter (New Zealand),
Augustyn Markiewicz (Poland), Götz Trenkler (Germany), Júlia Volaufová (USA), and
Dietrich von Rosen (Sweden), have joined the IOC; in 2008 George P. H. Styan was named
Honorary Chair of the IOC of the IWMS. It is of course worth emphasizing that a most
demanding task and responsibility for the meeting arrangements belongs to the local or-
ganizing committee.

The IWMS series has had three ILAS Lecturers: Gene H. Golub (1999), Jerzy K.
Baksalary (2003), and Ravindra B. Bapat (2008), and two Nokia Lecturers: Ingram Olkin
(2004) and C. Radhakrishna Rao (2005). As the IWMS Birthday Boys have been cele-
brated T. W. Anderson (80, 90), Ingram Olkin (80), C. Radhakrishna Rao (80), George
P. H. Styan (60, 65), and a Special Session for Tarmo Pukkila (60) was held in 2006.
Memorial Sessions have been held for Bernhard Flury (1999), Sujit Kumar Mitra (2004),
and Jerzy K. Baksalary (2005).

We now present a list of the 19 Workshops that have been held from 1990 to 2010,
as well as the 2011 Workshop in Tartu, Estonia. The photographs 1, 6, 7, 9 and 12 are
taken by the University of Tampere photographer, photograph 4 by Hazel Hunter and the
others by Simo Puntanen.

Photo 1: Group of participants in IWMS-1990, Tampere; C. Radhakrishna Rao inviting more
people to the picture.

1990/1: International Workshop on Linear Models, Experimental Designs, and Related Matrix Theory
Tampere, Finland, 6–8 August 1990, n = 98.
Chair of the Organizing Committee: Erkki Liski. Programme.

1992/2: [2nd] International Workshop on Matrix Methods for Statistics, Auckland, New Zealand, 4–5
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December 1992, n = 23.
Chair of the Organizing Committee: Alastair J. Scott. Report in Image.

1994/3: Tartu Satellite Workshop on Matrices in Statistics, Tartu, Estonia, 28 May 1994.
Local Chairs: Ene-Margit Tiit & Hannu Niemi, IOC Chair: George P. H. Styan.

1995/4: 4th International Workshop on Matrix Methods for Statistics, Montréal, Québec, Canada, 15–16
July 1995, n = 70.
Local and IOC Chair: George P. H. Styan. Report in Image.

Photo 2: IWMS-4, Montréal, 15–16 July 1995.

1996/5: 5th International Workshop on Matrix Methods for Statistics, Shrewsbury, England, 18–19 July
1996, n = 28.
Local and IOC Chair: R. William Farebrother. Programme. Report in Image.

1997/6: 6th International Workshop on Matrix Methods for Statistics, Istanbul, Turkey, 16–17 August
1997, n = 40.
Local Chair: Fikri Akdeniz, IOC Chair: Hans Joachim Werner. Report in Image.

1998/7: 7th International Workshop on Matrices and Statistics, Fort Lauderdale, Florida, USA, 11–14
December 1998, n = 78,
in celebration of T. W. Anderson’s 80th birthday. Programme.
Local Chair: Fuzhen Zhang, IOC Chair: George P. H. Styan. Report in Image.

Photo 3: George P. H. Styan, T. W. Anderson, Fuzhen Zhang; Fort Lauderdale, December 1998.
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1999/8: 8th International Workshop on Matrices and Statistics, Tampere, Finland, 7–8 August 1999,
n = 95.
� The ILAS Lecturer: Gene H. Golub.
Memorial Session: Bernhard Flury (1951–1999).
Local and IOC Chair: Simo Puntanen. Programme.
http://www.uta.fi/laitokset/mattiet/workshop99/, Report in Image.

2000/9: 9th International Workshop on Matrices and Statistics, Hyderabad, India, 9–13 December 2000,
n = 100,
in celebration of C. Radhakrishna Rao’s 80th birthday.
Local Chairs: S. B. Rao, P. Bhimasankaram, IOC Chair: Hans Joachim Werner.
Programme. Report in Image.

2001/10: 10th International Workshop on Matrices and Statistics, Voorburg, The Netherlands, 2–3 Au-
gust 2001, n = 54. Report in Image.
Local Chair: Patrick J. F. Groenen, IOC Chair: George P. H. Styan.

2002/11: 11th International Workshop on Matrices and Statistics, Lyngby, Denmark, 29–31 August
2002, n = 65,
in celebration of George P. H. Styan’s 65th birthday. Report in Image.
Local Chair: Knut Conradsen, IOC Chair: Hans Joachim Werner.

2003/12: 12th International Workshop on Matrices and Statistics, Dortmund, Germany, 5–8 August
2003, n = 45.
� The ILAS Lecturer: Jerzy K. Baksalary.
Programme. Report in Image.
Local Chair: Götz Trenkler, IOC Chair: Hans Joachim Werner.

2004/13: 13th International Workshop on Matrices and Statistics, Bedlewo, Poznań, Poland, 18–21
August 2004, n = 82,
in celebration of Ingram Olkin’s 80th birthday,
� The Nokia Lecturer: Ingram Olkin.
Memorial Session: Sujit Kumar Mitra (1932–2004).
Local Chair: Augustyn Markiewicz, IOC Chair: Simo Puntanen.
http://matrix04.amu.edu.pl/, Programme. Report in Image. Poster.

Photo 4: IWMS-13, Bedlewo, Poznań, Poland, 18–21 August 2004.

2005/14: 14th International Workshop on Matrices and Statistics, Massey University, Albany Campus,
Auckland, New Zealand, 30 March – 1 April 2005, n = 50.
� The Nokia Lecturer: C. Radhakrishna Rao.
Memorial Session: Jerzy K. Baksalary (1944–2005).
Local Chair: Jeffrey J. Hunter, IOC Chair: George P. H. Styan.
http://iwms2005.massey.ac.nz/, Announcement. Programme. Report in Image. Flyer.

2006/15: 15th International Workshop on Matrices and Statistics, Uppsala, Sweden, 13–17 June 2006,
n = 68.
Special Session for Tarmo Pukkila’s 60th birthday.
Local Chair: Dietrich von Rosen, IOC Chair: Hans Joachim Werner.
http://www.bt.slu.se/iwms2006/iwms06.html, Programme. Report in Image.
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Photo 5: IWMS-15, Uppsala, Sweden, 13–17 June 2006.

2007/16: 16th International Workshop on Matrices and Statistics, Windsor, Ontario, Canada, 1–3 June
2007, n = 74,
in celebration of George P. H. Styan’s 70th birthday,
Local Chair: S. Ejaz Ahmed, IOC Chair: George P. H. Styan.
http://www.uwindsor.ca/units/iwms/main.nsf, Programme. Poster.

2008/17: 17th International Workshop on Matrices and Statistics, Tomar, Portugal, 22–26 July 2008,
n = 80,
in celebration of T. W. Anderson’s 90th birthday.
� The ILAS Lecturer: Ravindra B. Bapat.
Local Chair: João T. Mexia, IOC Chair: Simo Puntanen.
http://www.iwms08.ipt.pt/, Programme. Report in Image. Poster.

2009/18: 18th International Workshop on Matrices and Statistics, Smolenice Castle, Slovakia, 23–27
June 2009, n = 67.
Local Chair: Viktor Witkovský, IOC Chair: Júlia Volaufová.
http://www.um.sav.sk/en/iwms2009.html, Programme. Poster.

2010/19: 19th International Workshop on Matrices and Statistics, Shanghai, China, 5–8 June 2010,
n = 186.
Local Chair: Yonghui Liu, IOC Chair: Jeffrey J. Hunter.
http://www1.shfc.edu.cn/iwms/index.asp, Programme. Report in Image.

2011/20: 20th International Workshop on Matrices and Statistics, with the Tartu 9th Conference on
Multivariate Statistics, Tartu, Estonia, 27–30 June 2011,
in celebration of Muni S. Srivastava’s 75th birthday.
Local Chair: Kalev Pärna, Programme Committee Chair: Dietrich von Rosen,
Vice-Chair: Tõnu Kollo.
http://www.ms.ut.ee/tartu11/

Selected refereed papers presented at the IWMS have been (or are about to be) pub-
lished in the following journal special issues:

1992: Third Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 176
(1992), viii + 289 pp. (Includes 8 research papers presented at the Workshop held in Tampere,
Finland, 6–8 August 1990.) Preface. DOI.
Jerzy K. Baksalary & George P. H. Styan, eds.

1993: Journal of Statistical Planning and Inference, vol. 36, no. 2–3 (1993), pp. 127–432. (24 research
papers presented at the Workshop held in Tampere, Finland, 6–8 August 1990.) Preface. Author
index. DOI.
Jerzy K. Baksalary & George P. H. Styan, eds.

1994: Fourth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol.
210 (1994), 273 pp. Preface. DOI.
Jeffrey J. Hunter, Simo Puntanen & George P. H. Styan, eds.

1996: Fifth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, In
Celebration of C. Radhakrishna Rao’s 75th Birthday. vol. 237/238 (1996), vii + 273 pp. Author
index.
Ravindra B. Bapat, George P. H. Styan & Hans Joachim Werner, eds.
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1997: Sixth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 264
(1997), ix + 506 pp. Preface. DOI.
R. William Farebrother, Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

1999: Seventh Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol.
289 (1999), iv + 344 pp. Preface. DOI.
R. William Farebrother, Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2000: Eighth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol.
321 (2000), xi + 412 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2002: Ninth Special Issue on Linear Algebra and Statistics: Linear Algebra and its Applications, vol. 354
(2002), xii + 291 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2004: Tenth Special Issue on Linear Algebra and Statistics, Part 1: Linear Algebra and its Applications,
vol. 388 (2004), 400 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2005: Tenth Special Issue on Linear Algebra and Statistics, Part 2: Linear Algebra and its Applications,
vol. 410 (2005), 290 pp. Preface. DOI.
Simo Puntanen, George P. H. Styan & Hans Joachim Werner, eds.

2005: Research Letters in the Information and Mathematical Sciences, vol. 8 (2005), v + 228 pp. Special
Issue: Proceedings of the 14th International Workshop on Matrices and Statistics, Auckland, New
Zealand, 30 March–1 April 2005. Foreword. Available online.
Jeffrey J. Hunter & George P. H. Styan, eds.

2006: Linear Algebra and its Applications, vol. 417 (2006), Proceedings of the 13th International Work-
shop on Matrices and Statistics, Bedlewo, Poznań, Poland, 18–21 August 2004. Preface. DOI.
Ludwig Elsner, Augustyn Markiewicz & Tomasz Szulc, eds.

2009: Linear Algebra and its Applications, vol. 430, no. 10 (2009), pp. 2563–2834, Proceedings of the
16th International Workshop on Matrices and Statistics, Windsor, Ontario, Canada, 1–3 June 2007.
Preface. DOI.
S. Ejaz Ahmed, Jeffrey J. Hunter, George P. H. Styan & Götz Trenkler, eds.

2010: Acta et Commentationes Universitatis Tartuensis de Mathematica, vol. 14, 2010. Proceedings
of the 18th International Workshop on Matrices and Statistics, Smolenice Castle, Slovakia, 23–27
June 2009.
Tõnu Kollo, Dietrich von Rosen, Viktor Witkovský & Júlia Volaufová, eds.

2011: Numerical Linear Algebra with Applications will publish a special issue as the Proceedings of the
19th International Workshop on Matrices and Statistics, Shanghai, China, 5–8 June 2010.
Åke Björck, Maya Neytcheva, Musheng Wei & Yonghui Liu, eds.

2011: Acta et Commentationes Universitatis Tartuensis de Mathematica, also welcomes papers presented
at the Shanghai IWMS.
Tõnu Kollo & Dietrich von Rosen, eds.

2012: IWMS-20 with the Tartu 9th Conference on Multivariate Statistics: Special volume by World
Scientific from selected papers of the Conference, Special volume of Acta et Commentationes Uni-
versitatis Tartuensis de Mathematica.
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Photo 6: Jerzy K. Baksalary giving a talk in Tampere, August 1990.

Photo 7: R. Dennis Cook, Norman Draper, Nye John, George P. H. Styan; Tampere, August
1990.
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Photo 8: Ravindra B. Bapat, Tomar, July
2008.

Photo 9: Ingram Olkin, Tampere, August
1990.

Photo 10: C. Radhakrishna Rao, Hyder-
abad, December 2000.

Photo 11: C. Radhakrishna Rao and Bhar-
gavi Rao, Hyderabad, December 2000.
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Photo 12: Jerzy K. Baksalary, Tadeusz Caliński, Sujit Kumar Mitra; Tampere, August 1990.

Photo 13: Gene H. Golub, Ingram Olkin, T. W. Anderson; Montréal, July 1995.
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Photo 14: Group of participants in Bedlewo, August 2004.

Photo 15: Enjoying the conference banquet (and the view to Detroit) in Windsor, June 2007.
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Photo 16: In an after-dinner session in Smolenice Castle in July 2009, Tõnu Kollo (smiling in
the picture) tentatively agreed to organize the IWMS-2011 in Tartu. Left: Soile Puntanen, right:
Miroslav Fiedler.
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