The asymptotic results for nearly critical branching processes with immigration

Yakubdjan M. Khusanbaev and Gayrat M. Rakhimov

Institute of Mathematics and Information Technology, Tashkent, Uzbekistan, email: yakubjank@mail.ru, gairat48@gmail.com

Keywords: confidentiality, disclosure risk, Metropolis algorithm, noise multiplication, prior distribution.

Let $\{\xi_{k,j}^{(n)}, k, j \in \mathbb{N}\}$ and $\{\epsilon_k^{(n)}, k \in \mathbb{N}\}$ be two independent sequences of nonnegative integer-valued and identically distributed random variables for every $n \in \mathbb{N}$. For $n \in \mathbb{N}$ we define a sequence of random variables recursively:

$$X_0^n = 0, \quad X_k^n = \sum_{j=1}^{X_{k-1}^n} \xi_{k,j}^{(n)} + \epsilon_k^{(n)}, \ k \in \mathbb{N}.$$

The sequence $\{X_k^n \ k \in \mathbb{N}\}$ is called a branching process with immigration [1]. We assume that $m_n = \mathbb{E}(\xi_{1,1}^{(n)})^2 < \infty$ and $\mathbb{E}(\epsilon_1^{(n)})^2 < \infty$ for all $n \in \mathbb{N}$. The branching process with immigration is called nearly critical if $m_n \to 1$ as $n \to \infty$.

In the papers [2]–[4] asymptotic behavior of the process $X_{[nt]}^n$, t > 0 has been investigated in the case $m_n = 1 + \alpha d_n^{-1} + O(d_n^{-1})$, $\alpha \in \mathbb{R}$ as $n \to \infty$, where d_n is a sequence of positive numbers such that $nd_n \to c$ as $n \to \infty$. In this paper we investigate asymptotic behavior of the random process $X_{[nt]}^n$, t > 0 when $nd_n \to \infty$ as $n \to \infty$ and prove limit theorems for $X_{[nt]}^n$, t > 0. We remark that the obtained results are different from the results in the case $m_n = 1 + \alpha n^{-1} + o(n^{-1})$.

References

- [1] Athreya, K.B., Ney P.E. (1972). Branching processes. Springer-Verlag, Berlin.
- [2] Sriram, T.N. (1994). Invalidity of bootstrap for immigration critical branching process with immigration. Ann. Statist. 22, 1013–1023.
- [3] Ispany M., Pap G., Van Zuijlen M.C.A. (2005). Fluctuation limit of branching processes with immigration and estimation of the means. Adv. Appl. Prob. 37, 523–538.
- [4] Khusanbaev Ya.M. (2009). The convergence of Galton-Watson branching processes with immigration to a diffusion process. *Theory Probab. Math. Statist.* 79, 179–185.