Another generalization of bivariate FGM distributions

Carles M. Cuadras and Walter Diaz

University of Barcelona, Spain, email: ccuadras@ub.edu, wdiaz0@hotmail.com

Keywords: copulas, Farlie-Gumbel-Morgenstern distribution, given marginals, Pearson's contingency coefficient.

Let H(x, y) be the bivariate cdf of (X, Y), with univariate marginals F(x), G(y)and supports [a, b], [c, d], respectively. Throughout this abstract, x and y in H(x, y), F(x), G(y), as well as u and v in C(u, v), where $0 \le u, v \le 1$, will be suppressed. We write $H \in \mathcal{F}(F, G)$, where $\mathcal{F}(F, G)$ is the family of cdf's with marginals F, G.

The Farlie-Gumbel-Morgenstern (FGM) family is $H_{\theta} = FG[1 + \theta(1 - F)(1 - G)]$, $-1 \le \theta \le 1$, and the corresponding copula is $C_{\theta} = uv[1 + \theta(1 - u)(1 - v)]$, $-1 \le \theta \le 1$. This family is frequently used in theory and applications. This motivated to study proper extensions in [2] and [1].

Let Φ, Ψ be two univariate cdf's with the same supports [a, b], [c, d]. Suppose that the Radon-Nykodim derivatives $d\Phi/dG, d\Psi/dG$ exist. We define the bivariate cdf

$$H = FG + \lambda(F - \Phi)(G - \Psi).$$

This cdf reduces to the classic FGM for $\Phi = F^2$, $\Psi = G^2$, and has interesting properties:

- 1. $H \in \mathcal{F}(F,G)$ for λ belonging to an interval depending on $d\Phi/dG$, $d\Psi/dG$.
- 2. H suggests the congugate family $H_* \in \mathcal{F}(\Phi, \Psi)$.
- 3. Define $a_1 = 1 d\Phi/dF$, $b_1 = 1 d\Psi/dG$. Then $E[a_1(X)] = E[b_1(Y)] = 0$ and $E[a_1^2(X)] = \alpha 1$, $E[b_1^2(Y)] = \beta 1$, where $\alpha = \int_a^b (\frac{d\Phi}{dF})^2 dF$, $\beta = \int_c^d (\frac{d\Psi}{dG})^2 dG$.
- 4. The first canonical correlation is $\rho_1 = \lambda \sqrt{(\alpha 1)(\beta 1)}$ and Pearson contingency coefficient is $\phi^2 = \rho_1^2$.
- 5. Spearman's rho and Kendall's tau are $\rho_S = 12\lambda(\frac{1}{2} F_{\Phi})(\frac{1}{2} G_{\Psi})$ and $\tau = 8\lambda(\frac{1}{2} F_{\Phi})(\frac{1}{2} G_{\Psi})$, where $F_{\Phi} = \int_a^b \Phi dF$, $\Phi_F = \int_c^d F d\Phi$.

The geometric dimensionality of a bivariate cdf is defined and discussed. Then we introduce the following generalized FGM

$$\begin{aligned} H &= FG + \lambda_1 (F - \Phi) (G - \Psi) \\ &+ \lambda_2 [(\frac{1}{2}F^2 + (F_{\Phi} - \frac{1}{2})F - F_{\Phi}(x)] [(\frac{1}{2}G^2 + (G_{\Psi} - \frac{1}{2})G - G_{\Psi}(y)], \end{aligned}$$

where $F_{\Phi}(x) = \int_{a}^{x} \Phi(t) dF(t)$, $G_{\Psi}(y) = \int_{c}^{y} \Psi(t) dG(t)$. This $H \in \mathcal{F}(F, G)$ is diagonal and two-dimensional. Finally we study how to approximate any cdf by a member of this family.

References

- Cuadras, C. M. (2008). Constructing copula functions with weighted geometric means. Journal of Statistical Planning and Inference 139, 3766–3772.
- [2] Rodríguez-Lallena, J. A., Úbeda-Flores, M. (2004). A new class of bivariate copulas. *Statistics & Probability Letters* 66, 315–325.