Maximum likelihood estimates for Markov-additive processes of arrivals by aggregated data

Alexander Andronov

Transport and Telecommunication Institute, Latvija, email: lora@mailbox.riga.lv

Keywords: additive components, parameter estimation, time-homogeneous Markov process.

We consider a simplification of Markov-additive process of arrivals. Let $\mathbf{N} = \{0, 1, ...\}, r$ be a positive integer, E be a countable set, and $(\mathbf{X}, J) = \{(\mathbf{X}(t), J(t)), t \geq 0\}$ be a considered process on state space $N^r \times E$. The increments of \mathbf{X} are associated to arrival events. Different (namely r) classes of arrivals are possible, so $X_i(t) = \text{total number of arrivals in } (0, t]$ in the class i, i = 1, 2, ..., r. We call \mathbf{X} the arrival component of (\mathbf{X}, J) , and J - the Markov component of (\mathbf{X}, J) .

Whenever the Markov component J is in the state j, the following two types of transitions in (\mathbf{X}, J) may occur. 1) The *i*-arrivals without a change of state in $j \in E$ occur at rate $\lambda_j^i(n)$, n > 0. 2) Changes of state in J without arrivals occur at rate $\lambda_{j,k}$, $k \in E$, $j \neq k$.

We suppose that J is a birth and death process. Let $\overrightarrow{\lambda} = (\lambda_{j,j+1} : j = 1, ..., m-1)$, $\overleftarrow{\lambda} = (\lambda_{j,j-1} : j = 2, ..., m)$. If the state $j \in E$ is fixed, then different arrivals form independent Poisson flows. Further, let $q_i(n)$ be a probability that *i*-arrival contains n items, $\sum_{n>0} q_i(n) = 1$. These probabilities do not depend on state $j \in J$ and are the known ones. Now, the *i*-arrival rates have the following structure: $\lambda_j^i(n) = v_j(\alpha^{(i)})q_i(n), j = 1, ..., m$, where v_j is a known function to an approximation of the parameters $\alpha^{(i)} = (\alpha_{1,i}, \alpha_{2,i}, ..., \alpha_{k,i})^T$. We consider a problem of unknown parameters $\alpha = (\alpha^{(1)} \ \alpha^{(2)} \ ... \ \alpha^{(r)})_{k\times r}, \overrightarrow{\lambda}$ and $\overleftarrow{\lambda}$ estimation. It is supposed that we have n independent copies $X^{(1)}(t), ..., X^{(n)}(t)$ of the considered process $X(t) = (X_1(t), ..., X_r(t))^T$ - total numbers of arrivals of various classes in (0, t]. Our initial point is the following: each X(t) has multivariate normal distribution with mean $E(X(t)) = t\mu$ and covariance matrix Cov(X(t)) = tC, where μ is r-dimensional column vector and C is $(r \times r)$ -matrix. The sample mean μ^* and the sample covariance matrix \mathbf{C}^* are sufficient statistics, therefore we must make statistical inferences on this basis. In the paper maximum likelihood estimates are calculated for unknown parameters.

References

- Pacheco, A., Tang, L. C., Pragbu U. N. (2009). Markov-Modulated Processes and Semiregenerative Phenomena. World Scientific, New Jersey - London -Singapore.
- [2] Turkington, D. A. (2002). Matrix Calculus and Zero-One Matrices. Statistical and Econometric Applications. Cambridge University Press, Cambridge.