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MANOVA

Classical multivariate statistical analysis is usually based on a
vector with correlated components, for example, y ∼ Np(µ,Σ).
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MANOVA

Classical multivariate statistical analysis is usually based on a
vector with correlated components, for example, y ∼ Np(µ,Σ).

The correlation may be due to time dependence, spacial
dependence or some other underlying latent process which is
not observable.
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Covariance with Kronecker structure

In many datasets we may have two processes which generate
dependency.
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Covariance with Kronecker structure

In many datasets we may have two processes which generate
dependency.

For example,
• in environmental sciences: when studying catchment areas

we have both spacial and temporal correlations,
• in neurosciences: when evaluating PET-image voxels,

voxels are also both temporally and spacially correlated,
• in array technology: many antigens are represented on

slides with observations over time, i.e. we have correlations
between antigens as well over time.
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Covariance with Kronecker structure

The main goal is to extend the classical model y ∼ Np(µ,Σ)

to y ∼ Npq(µ,Ψ ⊗Σ),

where y : pq × 1, µ : pq × 1, Ψ : q × q, Σ : p× p, and ⊗ denotes
the Kronecker product.
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Covariance with Kronecker structure

The main goal is to extend the classical model y ∼ Np(µ,Σ)

to y ∼ Npq(µ,Ψ ⊗Σ),

where y : pq × 1, µ : pq × 1, Ψ : q × q, Σ : p× p, and ⊗ denotes
the Kronecker product.

Both Ψ and Σ are unknown but it will be supposed that they are
positive definite.

Due to the Kronecker product structure, we may convert
y : pq × 1 into a matrix Y : p× q which is matrix normally
distributed, i.e. Y ∼ Np,q(µ,Σ,Ψ), where now µ is a p× q

matrix.

Wilks (1946), Votaw (1948), Srivastava (1965), Olkin (1973),
Arnold (1973), Boik (1991), Naik & Rao (2001), Chaganty &
Naik (2002), Lu & Zimmerman (2005), Roy & Khattree (2005).
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Covariance with Kronecker structure

We assume that we have n observations, Y i ∼ Np,q(µ,Σ,Ψ),
whereas in the classical case one usually has one observation
matrix Y ∼ Np,q(µ,Σ, I).
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Covariance with Kronecker structure

We assume that we have n observations, Y i ∼ Np,q(µ,Σ,Ψ),
whereas in the classical case one usually has one observation
matrix Y ∼ Np,q(µ,Σ, I).

The dispersion matrix of a matrix Y i is defined by a vectorized
form, i.e. D[Y i] = D[vec(Y i)], where vec is the usual
vec-operator. In our models

D[Y i] = Ψ ⊗Σ.

.
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Covariance with Kronecker structure

We assume that we have n observations, Y i ∼ Np,q(µ,Σ,Ψ),
whereas in the classical case one usually has one observation
matrix Y ∼ Np,q(µ,Σ, I).

The dispersion matrix of a matrix Y i is defined by a vectorized
form, i.e. D[Y i] = D[vec(Y i)], where vec is the usual
vec-operator. In our models

D[Y i] = Ψ ⊗Σ.

.

We shall exploit how the independent "matrix-observations" can
be used to estimate µ,Σ,Ψ with and without certain bilinear
structures on µ.
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Covariance with Kronecker structure

For the interpretation it is noted that Ψ : q × q describes the
covariance structure between the columns of Y i.
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Covariance with Kronecker structure

For the interpretation it is noted that Ψ : q × q describes the
covariance structure between the columns of Y i.

The covariance between the columns will be the same for each
row of Y i.

The other covariance matrix Σ : p× p describes the covariance
between the rows in Y i which will be the same for each column.
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Covariance with Kronecker structure

For the interpretation it is noted that Ψ : q × q describes the
covariance structure between the columns of Y i.

The covariance between the columns will be the same for each
row of Y i.

The other covariance matrix Σ : p× p describes the covariance
between the rows in Y i which will be the same for each column.

The product Ψ ⊗Σ takes into consideration both Ψ and Σ.

Indeed, Ψ⊗Σ tells us that the overall covariance consists of the
products of the covariances in Ψ and Σ, respectively.
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Covariance with Kronecker structure

We have

Cov[ykl, yrs] = σkrψls,

where Y i = (ykl),Σ = (σkr) and Ψ = (ψls).
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Covariance with Kronecker structure

We have

Cov[ykl, yrs] = σkrψls,

where Y i = (ykl),Σ = (σkr) and Ψ = (ψls).

Σ may consist of the time-dependent covariances and Ψ takes
care of the spacial correlation, or for the array data Ψ models
the dependency between antigens and Σ represents the
correlation over time.
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Covariance with Kronecker structure

We have

Cov[ykl, yrs] = σkrψls,

where Y i = (ykl),Σ = (σkr) and Ψ = (ψls).

Σ may consist of the time-dependent covariances and Ψ takes
care of the spacial correlation, or for the array data Ψ models
the dependency between antigens and Σ represents the
correlation over time.

Note that the correlation of ykl and yrs equals

corr[ykl, yrs] =
σkr√
σkkσll

ψls√
ψllψss

.

.
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Growth Curve model

Let us assume that the mean of Y i follows a multilinear model,
i.e.

E[Y i] = ABC,

where A : p× r and C : s× q are known design matrices.

This type of mean structure was introduced by Potthoff & Roy
(1964).

Under the assumption that Ψ = I (or Ψ known), i.e. we have
independent columns in Y i this will give us the well known
Growth Curve model. For details and references connected to
the model it is referred to Srivastava & Khatri (1979), Srivastava
& von Rosen (1998) or Kollo & von Rosen (2005).
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Growth Curve model

Observe that if the matrix Y i : p× q is Np,q(ABC,Σ,Ψ)

distributed we may form a new matrix

Y = (Y 1 : Y 2 : . . . : Y n),

which is

Np,qn(AB(1′
n ⊗ C),Σ, In ⊗ Ψ),

where 1n is a vector of 1s of size n.
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Covariance with Kronecker structure

Aims
• The aim is to present estimating equations for estimating

B,Σ and Ψ,
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Covariance with Kronecker structure

Aims
• The aim is to present estimating equations for estimating

B,Σ and Ψ,
• to show how to estimate the parameters when FBG = 0

holds for known matrices F and G.
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Covariance with Kronecker structure

Aims
• The aim is to present estimating equations for estimating

B,Σ and Ψ,
• to show how to estimate the parameters when FBG = 0

holds for known matrices F and G.
• based on the MLEs to consider the likelihood ratio test for

testing H0 : FBG = 0 versus H1 : FBG 6= 0.
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MLEs when Ψ is known

When Ψ is known we have a situation which is almost identical
to the classical Growth Curve model setup. The main difference
is that now we have n matrix observations instead of 1,
i.e. Np,q(ABC,Σ,Ψ).
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MLEs when Ψ is known

When Ψ is known we have a situation which is almost identical
to the classical Growth Curve model setup. The main difference
is that now we have n matrix observations instead of 1,
i.e. Np,q(ABC,Σ,Ψ).

Since Ψ is positive definite, we transform the data,
i.e. Y i = Y iΨ

−1/2, where Ψ1/2 is a positive definite square root
of Ψ.

8th Tartu conf..., 25-29/06, Tartu, Estonia – p. 11/27



MLEs when Ψ is known

When Ψ is known we have a situation which is almost identical
to the classical Growth Curve model setup. The main difference
is that now we have n matrix observations instead of 1,
i.e. Np,q(ABC,Σ,Ψ).

Since Ψ is positive definite, we transform the data,
i.e. Y i = Y iΨ

−1/2, where Ψ1/2 is a positive definite square root
of Ψ.

Let Y = (Y 1 : Y 2 : . . . : Y n) : p× qn, then

Y ∼ Np,qn(AB(1′
n ⊗ CΨ−1/2),Σ, I).
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MLEs when Ψ is known

From results in Srivastava & Khatri (1979) or Kollo & von Rosen
(2005) it follows directly that

nB̂ = (A′S−1A)−A′S−1Y (1n ⊗Ψ−1/2C ′(CΨ−1C ′)−)

+(A′)◦Z1 + A′Z2C
◦′

,

S = Y (I − n−11n1
′
n ⊗ Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′,
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MLEs when Ψ is known

From results in Srivastava & Khatri (1979) or Kollo & von Rosen
(2005) it follows directly that

nB̂ = (A′S−1A)−A′S−1Y (1n ⊗Ψ−1/2C ′(CΨ−1C ′)−)

+(A′)◦Z1 + A′Z2C
◦′

,

S = Y (I − n−11n1
′
n ⊗ Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′,

where A′◦ and C◦ are any matrices which generate C(A′)⊥ and
C(C)⊥, i.e. the orthogonal complements of C(A′) and C(C),
respectively, and C(·) denotes the column vector space.
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MLEs when Ψ is known

From results in Srivastava & Khatri (1979) or Kollo & von Rosen
(2005) it follows directly that

nB̂ = (A′S−1A)−A′S−1Y (1n ⊗Ψ−1/2C ′(CΨ−1C ′)−)

+(A′)◦Z1 + A′Z2C
◦′

,

S = Y (I − n−11n1
′
n ⊗ Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′,

where A′◦ and C◦ are any matrices which generate C(A′)⊥ and
C(C)⊥, i.e. the orthogonal complements of C(A′) and C(C),
respectively, and C(·) denotes the column vector space.

Moreover, − denotes an arbitrary g-inverse, and Z1 and Z2 are
arbitrary matrices of proper size.

8th Tartu conf..., 25-29/06, Tartu, Estonia – p. 12/27



MLEs when Ψ is known

Furthermore,

nqΣ̂ = (Y − AB̂(1′
n ⊗ CΨ−1/2))(Y − AB̂(1′

n ⊗ CΨ−1/2))′

=S+n−1SA◦(A◦′

SA◦)−A◦′

Y (1n1
′
n⊗Ψ−1/2C(C ′Ψ−1C)−C ′Ψ−1/2)Y ′

×A◦(A◦′

SA◦)−A◦′

S.
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MLEs when Ψ is known

Furthermore,

nqΣ̂ = (Y − AB̂(1′
n ⊗ CΨ−1/2))(Y − AB̂(1′

n ⊗ CΨ−1/2))′

=S+n−1SA◦(A◦′

SA◦)−A◦′

Y (1n1
′
n⊗Ψ−1/2C(C ′Ψ−1C)−C ′Ψ−1/2)Y ′

×A◦(A◦′

SA◦)−A◦′

S.

If rank(A)=r and rank(C)=s then B̂ is uniquely estimated, i.e.

nB̂ = (A′S−1A)−1A′S−1Y (1n ⊗ Ψ−1/2C ′(CΨ−1C ′)−1).
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MLEs when Ψ is known

Furthermore,

nqΣ̂ = (Y − AB̂(1′
n ⊗ CΨ−1/2))(Y − AB̂(1′

n ⊗ CΨ−1/2))′

=S+n−1SA◦(A◦′

SA◦)−A◦′

Y (1n1
′
n⊗Ψ−1/2C(C ′Ψ−1C)−C ′Ψ−1/2)Y ′

×A◦(A◦′

SA◦)−A◦′

S.

If rank(A)=r and rank(C)=s then B̂ is uniquely estimated, i.e.

nB̂ = (A′S−1A)−1A′S−1Y (1n ⊗ Ψ−1/2C ′(CΨ−1C ′)−1).

Note that Σ̂ is always uniquely estimated.

8th Tartu conf..., 25-29/06, Tartu, Estonia – p. 13/27



MLEs when Ψ is known

Turning to the restrictions FBG = 0 it is observed that these
restrictions are equivalent to

B = (F ′)◦θ1 + F ′θ2G
◦′

,

where θ1 and θ2 may be regarded as new parameters. From
Theorem 4.1.15 in Kollo & von Rosen (2005) it follows that

B̂ = (F ′)◦θ̂1 + F ′θ̂2G
◦′

,
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MLEs when Ψ is known

Turning to the restrictions FBG = 0 it is observed that these
restrictions are equivalent to

B = (F ′)◦θ1 + F ′θ2G
◦′

,

where θ1 and θ2 may be regarded as new parameters. From
Theorem 4.1.15 in Kollo & von Rosen (2005) it follows that

B̂ = (F ′)◦θ̂1 + F ′θ̂2G
◦′

,

where

bθ2=(FA′T ′

1
S−1

2
T1AF ′)−FA′T ′

1
S−1

2
T1Y G◦(1n⊗Ψ

−1/2C′G◦)(G◦
′

CΨ
−1C′G◦)−

+(FA′T ′

1
)◦Z11+FA′T ′

1
Z12(G

◦
′

C)◦′
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MLEs when Ψ is known

with
T 1 = I − A(F ′)

◦
((F ′)

◦′

A′S−1
1 A(F ′)

◦
)−(F ′)

◦′

A′S−1
1 ,

8th Tartu conf..., 25-29/06, Tartu, Estonia – p. 15/27



MLEs when Ψ is known

with

S1 = Y (I − n−11n1
′
n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′

is assumed to be positive definite,
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MLEs when Ψ is known

with

S2 = S1 + T 1Y (n−11n1
′
n ⊗Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)

× (I − n−11n1
′
n ⊗Ψ−1/2C ′G◦(G◦′

CΨ−1C ′G◦)−G◦′

CΨ−1/2)

× (n−11n1
′
n ⊗ Ψ−1/2C ′(CΨ−1C ′)−CΨ−1/2)Y ′T ′

1,
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MLEs when Ψ is known

with

θ̂1 =(F ′◦′

A′S−1
1 A(F ′)

◦
)−F ′◦′

A′S−1
1 (Y− AF ′θ̂2G

◦′

CΨ−1/2)Ψ−1/2C ′

× (CΨ−1C ′)− + (F ′◦′

A)◦
′

Z21 + F ′◦′

A′Z22C
◦′

,

where Zij are arbitrary matrices,
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MLEs when Ψ is known

Furthermore,

nqΣ̂ = (Y − AB̂(1′
n ⊗ CΨ−1/2))(Y− AB̂(1′

n ⊗ CΨ−1/2))′.
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Explicit estimators when Ψ is unknown

If Y i ∼ Np,q(ABC,Σ,Ψ) it follows that

D[Y i] = Ψ ⊗Σ.
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Explicit estimators when Ψ is unknown

If Y i ∼ Np,q(ABC,Σ,Ψ) it follows that

D[Y i] = Ψ ⊗Σ.

Since cΨ ⊗ c−1Σ : the parameterization can not be uniquely
interpreted, i.e. the model is overparameterized.
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Since cΨ ⊗ c−1Σ : the parameterization can not be uniquely
interpreted, i.e. the model is overparameterized.

If Ψ is unknown we will suppose that ψqq = 1.
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Explicit estimators when Ψ is unknown

If Y i ∼ Np,q(ABC,Σ,Ψ) it follows that

D[Y i] = Ψ ⊗Σ.

Since cΨ ⊗ c−1Σ : the parameterization can not be uniquely
interpreted, i.e. the model is overparameterized.

If Ψ is unknown we will suppose that ψqq = 1.

If all diagonal elements in Ψ are assumed to equal 1, it is easy
to produce some heuristic estimators.

8th Tartu conf..., 25-29/06, Tartu, Estonia – p. 17/27



Explicit estimators when Ψ is unknown

If Y i ∼ Np,q(ABC,Σ,Ψ) it follows that

D[Y i] = Ψ ⊗Σ.

Since cΨ ⊗ c−1Σ : the parameterization can not be uniquely
interpreted, i.e. the model is overparameterized.

If Ψ is unknown we will suppose that ψqq = 1.

If all diagonal elements in Ψ are assumed to equal 1, it is easy
to produce some heuristic estimators.

The main idea is to produce estimators of B and Σ by
neglecting the dependency among columns. Thereafter the
off-diagonal elements in Ψ are estimated.
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Explicit estimators when Ψ is unknown

Theorem 3.1. Let Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, In ⊗ Ψ), where

diag(Ψ)=I. Unbiased estimators of ABC and Σ are given by

nAB̂C = A(A′S−1A)−A′S−1Y (1n ⊗ C ′(CC ′)−C),

q(n− 1)Σ̂ = S = Y (1◦
n(1◦′

n 1◦
n)−1◦′

n ⊗ I)Y ′.
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Explicit estimators when Ψ is unknown

Theorem 3.2. Let Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, In ⊗ Ψ), where

diag(Ψ)=I. A consistent estimator of the unknown elements in
Ψ is given by

ψ̂kl = n−1tr(Σ̂−1(Y (I ⊗ ek) − AB̂(1′
n ⊗ ek))

×(Y (I ⊗ el) − AB̂(1′
n ⊗ el))

′), k 6= l,

where

AB̂ek = n−1A(A′S−1A)−A′S−1Y (1n ⊗ C ′(CC ′)−ek),

Σ̂ = (qn)−1S

and S is given in Theorem 3.1.
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Explicit estimators when Ψ is unknown

Theorem 3.3. Let Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, InΨ), where

diag(Ψ)=I and FBG = 0. Unbiased estimators of ABC and Σ

ÂBC = A(F ′)◦θ̂1C + AF ′θ̂2G
◦′

C,

q(n− 1)Σ̂ = S = Y (1◦
n(1◦′

n 1◦
n)−1◦′

n ⊗ I)Y ′,
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Explicit estimators when Ψ is unknown

Theorem 3.3. Let Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, InΨ), where

diag(Ψ)=I and FBG = 0. Unbiased estimators of ABC and Σ

ÂBC = A(F ′)◦θ̂1C + AF ′θ̂2G
◦′

C,

q(n− 1)Σ̂ = S = Y (1◦
n(1◦′

n 1◦
n)−1◦′

n ⊗ I)Y ′,

where

nθ̂2 =(FA′T ′
1S

−1T 1AF ′)−FA′T ′
1S

−1T 1Y (1n⊗C ′G◦(G◦′

CC ′G◦)−)

+(FA′T ′
1)

◦Z11 + FA′T ′
1Z12(G

◦′

C)◦
′

,

T 1 =I − A(F ′)
◦
((F ′)

◦′

A′S−1A(F ′)
◦
)−(F ′)

◦′

A′S−1,

nθ̂1 =((F ′)◦
′

A′S−1A(F ′)
◦
)−F ′◦′

A′S−1(Y− AF ′θ̂2G
◦′

CΨ−1/2)Ψ−1/2C ′

× (CΨ−1C ′)− + (F ′◦′

A)◦
′

Z21 + F ′◦′

A′Z22C
◦′

,

where Zij are arbitrary matrices.
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MLEs of B, Σ and Ψ

The aim is to find maximum likelihood estimators of the
parameters in the model

Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, In ⊗ Ψ).

We assume that the uniqueness condition ψqq = 1 holds.

The other diagonal elements of Ψ will be positive but unknown
(earlier we assumed diag(Ψ) = bI).
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MLEs of B, Σ and Ψ

The aim is to find maximum likelihood estimators of the
parameters in the model

Y ∼ Np,qn(AB(1′
n ⊗ C),Σ, In ⊗ Ψ).

We assume that the uniqueness condition ψqq = 1 holds.

The other diagonal elements of Ψ will be positive but unknown
(earlier we assumed diag(Ψ) = bI).

First we study the following model

Y ∼ Np,qn(µ(1′
n ⊗ I),Σ, I ⊗ Ψ).

and thereafter the model with E[Y ] = AB(1′

n ⊗ C).
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MLEs of B, Σ and Ψ

The likelihood equals

L = c|Σ|−1/2qn|Ψ|−1/2npe−
1

2
tr{Σ−1(Y −µ(1′

n⊗Iq))(I⊗Ψ)−1(Y −µ(1′

n⊗Iq))′},

where c is a proportionality constant which does not depend on
the parameters.
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MLEs of B, Σ and Ψ

The likelihood equals

L = c|Σ|−1/2qn|Ψ|−1/2npe−
1

2
tr{Σ−1(Y −µ(1′

n⊗Iq))(I⊗Ψ)−1(Y −µ(1′

n⊗Iq))′},

where c is a proportionality constant which does not depend on
the parameters.

The MLE of the mean equals

µ̂ = n−1Y (1n ⊗ Iq)
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MLEs of B, Σ and Ψ

The MLE of Σ equals

nqΣ̂ = Y (1o
n(1o′

n 1o
n)1o′

n ⊗ Ψ)Y ′.
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MLEs of B, Σ and Ψ

The MLE of Σ equals

nqΣ̂ = Y (1o
n(1o′

n 1o
n)1o′

n ⊗ Ψ)Y ′.

When estimating Ψ we have to take into account that ψqq = 1.
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MLEs of B, Σ and Ψ

The MLE of Σ equals

nqΣ̂ = Y (1o
n(1o′

n 1o
n)1o′

n ⊗ Ψ)Y ′.

When estimating Ψ we have to take into account that ψqq = 1.
The idea is to condition with respect to columns yi1, . . . ,yiq. Put

Zik = (yik : yik+1 : · · · : yiq)

and let fY i
denote the density function for Y i. Then,
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MLEs of B, Σ and Ψ

The MLE of Σ equals

nqΣ̂ = Y (1o
n(1o′

n 1o
n)1o′

n ⊗ Ψ)Y ′.

When estimating Ψ we have to take into account that ψqq = 1.
The idea is to condition with respect to columns yi1, . . . ,yiq. Put

Zik = (yik : yik+1 : · · · : yiq)

and let fY i
denote the density function for Y i. Then,

fY i
=

q∏

k=2

(fyik−1
|Zik

)fyiq
.
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MLEs of B, Σ and Ψ

The conditional distributions are normal with parameters

Bk = (Ψk
22)

−1Ψk
21

ψk
1•2 = ψk

11 −Ψk
12(Ψ

k
22)

−1Ψk
21,

where

Ψk = (0 : It)Ψ

(
0

It

)
, t = q − k − 2,

Ψk =

(
ψk

11 Ψk
12

Ψk
21 Ψk

22

)

,

(
1 × 1 1 × t− 1

t− 1 × 1 t− 1 × t− 1

)
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MLEs of B, Σ and Ψ

The parameters {Bk,Ψk
1•2} are in one-to-one correspondence

with Ψ if ψqq = 1.
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MLEs of B, Σ and Ψ

The parameters {Bk,Ψk
1•2} are in one-to-one correspondence

with Ψ if ψqq = 1. Estimation equations are given by

B̂k

= (

n∑

i=1

(zik − µk
2)

′Σ−1(zik − µk
2))

−1
n∑

i=1

(zik − µk
2)

′Σ−1(xk−1 − µk
1),

k = 2, 3, . . . , q,

npΨ̂k
1•2 = tr{Σ−1(yk−1 − (µk

1 + (zk − (1′
n ⊗ µk

2))(In ⊗ B̂k)))

×(yk−1 − (µk
1 + (zk − (1′

n ⊗ µk
2))(In ⊗ B̂k)))′}.

where

µk = µ

(
0

It

)
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MLEs of B, Σ and Ψ

Estimation equations when ψqq = 1; Summary.

µ = n−1Y (1n ⊗ Iq),

nqΣ = Y (1◦
n(1◦′

n 1◦
n)−1◦′

n ⊗ Ψ−1)Y ′,

Bk

= (
n∑

i=1

(zik − µk
2)

′Σ−1(zik − µk
2))

−1
n∑

i=1

(zik − µk
2)

′Σ−1(xk−1 − µk
1),

npΨk
1•2 = tr{Σ−1(yk−1 − (µk

1 + (zk − (1′
n ⊗ µk

2))(In ⊗ Bk)))()′},
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MLEs of B, Σ and Ψ

Estimation equations when ψqq = 1 can also be obtained when
µ = ABC. In this case we replace the equation concerning µ by
an equation for B which is obtained from a ML-approach where
Ψ is known:

nB̂ = (A′S−1A)−1A′S−1Y (1n ⊗ Ψ−1/2C ′(CΨ−1C ′)−1).

nqΣ̂ = (Y − AB̂(1′
n ⊗ CΨ−1/2))(Y − AB̂(1′

n ⊗ CΨ−1/2))′
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Thank you!
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