
Modeling Dependence of Daily Stock Prices and

Making Predictions of Future Movements

Taavi Tamkivi, prof Tõnu Kollo

Institute of Mathematical Statistics
University of Tartu

29. June 2007
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Methods of stock analysis

Methods which predict the direction and amplitude of future
movements of stock prices are divided into two groups – they are
fundamental and technical analysis.

Fundamental analysis examines the reasons of price movements – the
possible value of company, growth potential, economical environment,
etc.

Technical analysis deals with the results of price movements. It
searches known patterns from graphs and assumes that these patterns
will recur.
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Figure: Indicators of technical analysis (Google stock)
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Copulas

Copulas are functions that join one-dimensional CDF-s of random
variables with their multivariate distribution.

On the other hand, copulas are the CDF-s with marginals that have
standard uniform distributions.

Definition

With given random vector (X , Y ), its CDF H(x , y) and marginal CDF-s
F (x) ja G (y), we call a function C (u, v), which is defined as
C (u, v) = H(F−1(u), G−1(v)), a copula.
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Definition of some copulas

Definition

Function C (u, v) which is given by C (u, v) = B(Q−1(u), Q−1(v), r),
where B is a CDF of bivariate normal distribution, Q−1 is an inverse of
CDF of normal distribution and r is a linear correlation coefficient, is
called a Gaussian copula.

Definition

Let the φ be a convex function given in (0,∞) which is increasing in (0, 1]
and φ(1) = 0. Let the inverse of φ denoted as a φ−1. Then we call a
function

Cφ(u, v) = φ−1(φ(u) + φ(v)), where u, v ∈ (0, 1]

as an Archimedean copula and a function φ is its generator.
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The problem of classification

Classification is a categorization of the given object into one of given
classes. Description of the object and its possible classes are given to
the classifier as an input and it has to decide the correct class of the
object.

Let the description of the object be given with the feature vector
x ∈ R

n and the set of possible classes be denoted as follows
Y = {0, 1, . . . , k − 1}. Now we can present the classifier as a function
g :

g : R
n → Y. (1)
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Marginal methods

Definition

Let us have a random multivariate sample (x1, . . . , xl), xi ∈ R
n with a

given classes yi ∈ {−1, 1} (we know, into which class each element
belongs to). If there exists a vector φ and a constant c such that
yi (φ

′xi + c) ≥ 0 for each pair of (xi , yi ) then we say that we have a
linearly separable sample.
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Marginal methods

Let us have a hyperplane that is located between the two classes of
sample elements and its distance from each class is maximal. Assume
that this hyperplane could be the best classifier for the linearly
separable sample.

For each φ we define a c1(φ) = minyi=1 〈xi , φ〉,
c2(φ) = maxyj=−1 〈xj , φ〉 and a vector φ0, which maximizes the

equation ρ(φ) = c1(φ)−c2(φ)
2 , |φ| = 1

Variable ρ(φ) is a distance between the hyperplane and the nearest
sample element, lets call it a marginal.

Such φ0 and a constant c0 = c1(φ0)+c2(φ0)
2 define the optimal

hyperplane which has a maximal marginal.
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Marginal methods

Figure: Optimal hyperplane divides the sample and has a maximal marginal.
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Marginal methods

we can find an optimal hyperplane by solving the dual equation of
Lagrange functional.

It comes out that only some elements from the sample define the
optimal hyperplane – they are the ones that are the nearest to this
hyperplane. These elements are called as a support vectors and they
are denoted by SV.
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Support Vector Machines

The idea of Support Vector Machines (SVM) is simple:

Using some nonlinear mapping Φ : R
n → Z we project the elements

of the sample xi , i = 1, . . . , l , xi ∈ R
n into higher-dimensional feature

space Z . Then we find

Then we find a optimal hyperplane in Z , which separates the sample
Φ(x1), . . . ,Φ(xl).

This hyperplane is nonlinear in the original space of feature vector x .
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Support Vector Machines

Using SVM-s we get that the decision rule (classifier) in original space
is given by f (x , α) = sign

(
∑

i∈SV yiα
0
i K (x , xi ) + b

)

, where α0
i and b

are parameters found by solving optimization problem and K (x , xi ) is
a predefined function. Function K is called kernel and it defines an
inner product for space Z .

The shape of kernel K is given by statistician and it depends on the
type of data (it has to be positively semi-defined).

I used Gaussian kernel: K (x , y) = exp
(

− ||x−y ||2

2σ2

)

and polynomial

kernel: K (x , y) = (x ′y + R)p.
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Modeling

we look the history of IBM corp. stock data – 6210 days which are
devided into training sample (to solve the optimization problem and
find the optimal hyperplane) and test sample (to test the accuracy of
the model.

for the model we take the volume and price of the stock data in days
i , i − 1, . . . , i − 19 and use them as an input data. For each day we
have:

◮ ln ratio of closing prices in sequential days;
◮ ln ratio of opening and closing price in one day;
◮ ln ratio of maximal price and closing price in one day;
◮ ln ratio of minimal price and closing price in one day;
◮ ln ratio of volumes in sequential days.

Trading day i belongs to class yi = 1, if the stock price in next day
increased and into class yi = −1, if the price decreased.

Taavi Tamkivi, prof Tõnu Kollo (Institute of Mathematical Statistics University of Tartu)Modeling Dependence of Daily Stock Prices and Making Predictions of Future Movements29. June 2007 13 / 14



Classification

We used Gaussian and Archimedean copula and SVM-s with Gaussian
and polynomial kernel for data classification.

The dimension of the input vector was different: for SVM-s it was
100, for copulas 2 and 3.

We trained the models using training sample and tested them on test
sample, but non of models gave good results. For all of them the
accuracy of classifying test data was below 54%.
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