

Multivariate Bayesian Forecasting under Functional Distortions in the χ^2 -metric

Alexey Kharin Pavel Shlyk

Dept. of Probability Theory & Mathematic Statistics Faculty of Applied Mathematics & Computer Science Belarusian State University Minsk, Belarus

The 8th Tartu Conference on Multivariate Statistics, 2007

Outline

Introduction

Hypothetical Forecasting Model

Multivariate Bayesian Forecasting Model Hypothetical Risk Functional Bayesian Prediction Statistic

Forecasting Model under Functional Distortions

 $\chi^2\text{-metric Distortions of Priors}$ Risk Functionals as Robustness Characteristics Robust Prediction Statistics

Main Results

The Guaranteed Upper Risk Functional Construction The Robust Prediction Statistics Construction

Conclusion

Introduction

The main spheres of Bayesian framework application:

- medical sciences:
- financial markets:
- bio-informatics.

Investigations on robustness of Bayesian forecasting:

- Bayesian Robustness / ed. by G.O.Berger et al., 1995;
- Problemy odporności w byesowskiej analizie statystycznej / Marek Męczarski, 1998;
- Minimax Robustness of Bayesian Forecasting under Functional Distortions of Probability Densities / Alexey Kharin, 2002.

Hypothetical Model of Bayesian Forecasting

Let on a probability space (Ω, \mathcal{F}, P) be defined three random elements:

- ► the unobserved vector of model parameters $\theta \in \Theta \subseteq \mathbb{R}^m, \pi^0(\theta);$
- the vector of observations $x = (x_t)_{t=1}^T \in X \subseteq \mathbb{R}^{n \times T}, p^0(x|\theta);$
- the value to be forecasted $y \in Y \subseteq \mathbb{R}^n$, $g^0(y|x, \theta)$.

Hypothetical Risk Functional

The performance of a prediction statistics $f(\cdot) : X \to Y$ can be measured by hypothetical risk functional $r^0(f(\cdot))$:

$$r^{0}(f(\cdot)) = \mathcal{E}_{0}\left\{\rho^{2}(f(x), y)\right\} = \iint_{X} \int_{Y} s^{0}(x, y)\rho^{2}(f(x), y) \, dy dx, \quad (1)$$

$$s^{0}(x,y) = \int_{\Theta} g^{0}(y|x,\theta) p^{0}(x|\theta) \pi^{0}(\theta) d\theta.$$
 (2)

 $\rho\left(\cdot,\cdot
ight)$ is the Euclidean distance function in \mathbb{R}^{n} .

Bayesian Prediction Statistics

Hypothetical Bayesian Prediction Density:

$$q^{0}(y|x) = \int_{\Theta} g^{0}(y|x,\theta)\pi^{0}(\theta|x) \, dx.$$
(3)

$$\pi^{0}(\theta|x) = \frac{p^{0}(x|\theta)\pi^{0}(\theta)}{p^{0}(x)}, p^{0}(x) = \int_{\Theta} p^{0}(x|\theta)\pi^{0}(\theta) \,d\theta.$$
(4)

Bayesian Prediction Statistics:

$$\hat{y} = f^0(x) = \mathcal{E}_0\{y|x\} = \int_Y y \cdot q^0(y|x) \, dy.$$
 (5)

Bayesian Prediction Statistics is optimal with respect to the hypothetical risk functional.

Distortions of the Hypothetical Model

We consider functional distortions of priors, defined using χ^2 -metric:

$$\rho_{\chi^2}(h_1, h_2) = \int_U \frac{(h_1(u) - h_2(u))^2}{h_1(u)} \, du,\tag{6}$$

where p.d.f.s $h_1(u), h_2(u)$ are defined on U. Suppose that θ is distributed according to an unknown p.d.f. $\pi^{\varepsilon}(\cdot) \in \Pi$:

$$\pi^{0}(\theta) \rightsquigarrow \pi^{\varepsilon}(\theta) \in \Pi = \{\Pi_{\varepsilon} : 0 \le \varepsilon \le \varepsilon_{+}\},$$

$$\Pi_{\varepsilon} = \{\pi^{\varepsilon}(\cdot) : \rho_{\chi^{2}}(\pi^{0}(\cdot), \pi^{\varepsilon}(\cdot)) = \varepsilon_{+}^{2}\}.$$
(7)

Risk Functionals as Robustness Characteristics

We measure the performance of a prediction statistics $f(\cdot) : X \to Y$ by the risk functional $r(\cdot, \cdot)$:

$$r(f(\cdot), \tilde{\pi}(\cdot)) = \mathbb{E}\left\{\rho^{2}(f(x), y)\right\} = \iint_{X} \iint_{Y} \tilde{s}(x, y)\rho^{2}(f(x), y) \, dxdy.$$
(8)

$$ilde{s}(x,y) = \int\limits_{\Theta} g^0(y|x, heta) p^0(x| heta) ilde{\pi}(heta) \, d heta.$$

We use the guaranteed upper risk functional $r_*(\cdot)$ to measure the robustness of $f(\cdot)$:

$$r_*(f(\cdot)) = \sup_{\tilde{\pi}(\cdot)\in\Pi} r(f(\cdot), \tilde{\pi}(\cdot)).$$
(9)

We aim to find the robust bayesian prediction statistics $f_*(\cdot)$:

$$r_*(f_*(\cdot)) = \inf_{f(\cdot)} r_*(f(\cdot)).$$
(10)

The Conditional Risk Functional

As a Borelean function $\pi^{\varepsilon}(\cdot)$ from Π should be a p.d.f., the following ratios are valid:

$$\pi^{arepsilon}(heta)\geq 0, heta\in\Theta, \int\limits_{\Theta}\pi^{arepsilon}(heta)\,d heta=1.$$

The risk functional can be represented as:

$$r(f(\cdot);\pi^{\varepsilon}(\cdot)) = \int_{\Theta} \pi^{\varepsilon}(\theta) r_1(f(\cdot);\theta) \, d\theta, \tag{11}$$

$$r_1(f(\cdot);\theta) = \iint_{X} \int_{Y} \rho^2(f(x), y) s^0(x, y|\theta) \, dy dx; \tag{12}$$

$$s^{0}(x, y|\theta) = g^{0}(y|x, \theta)p^{0}(x|\theta).$$
 (13)

Critical Distortions Level

The guaranteed upper risk functional can be represented as

$$r_*(f(\cdot)) = \sup_{\pi^{\varepsilon}(\cdot) \in \Pi} r(f(\cdot); \pi^{\varepsilon}(\cdot)).$$
(14)

Denote the conditional risk variance as $\stackrel{\circ}{r}(f(\cdot);\theta)$:

$$\overset{\circ}{r}(f(\cdot);\theta) = r_1(f(\cdot);\theta) - E_0\{r_1(f(\cdot);\theta)\}.$$
(15)

Introduce the critical distortions level:

$$\varepsilon^*(f(\cdot)) = \frac{\sqrt{D_0\{r_1(f(\cdot);\theta)\}}}{\sup_{\theta \in \Theta} |\stackrel{\circ}{r}(f(\cdot);\theta)|}.$$
(16)

Extreme Probability Density Function

Theorem

Let the hypothetical forecasting model be distorted according to (7) and for any p.s. $f(\cdot) : X \to Y$ the distortion level $\varepsilon_+ \in [0, \varepsilon^*(f(\cdot))]$. Then the guaranteed upper risk functional can be represented as

$$r_*(f(\cdot)) = r(f(\cdot); \pi^*(\cdot)),$$
 (17)

where the extreme p.d.f. $\pi^*(\cdot)$ is defined as

$$\pi^*(\theta) = \pi^0(\theta) \left(1 + \varepsilon_+ \frac{\stackrel{\circ}{r}(f(\cdot);\theta)}{\sqrt{D_0\{r_1(f(\cdot);\theta)\}}} \right).$$
(18)

The Guaranteed Upper Risk Functional

Corollary

Under the theorem conditions the guaranteed upper risk can be represented as

$$r_*(f(\cdot)) = r_0(f(\cdot)) + \varepsilon_+ \sqrt{D_0\{r_1(f(\cdot);\theta)\}},$$
(19)

where $r_0(f(\cdot))$ is the hypothetical risk functional:

$$r_0(f(\cdot)) = \int_{\Theta} r_1(f(\cdot);\theta) \pi^0(\theta) \, d\theta.$$
(20)

The Robust Prediction Statistics Denote for $x \in X, y \in Y, \theta \in \Theta$:

$$F_{\varepsilon}(f(\cdot); x, y, \theta) = s^{0}(x, y|\theta) + \frac{\varepsilon \left(s^{0}(x, y|\theta) - s^{0}(x, y)\right) \mathring{r}(f(\cdot); \theta)}{\sqrt{D_{0}\{r_{1}(f(\cdot); \theta)\}}}.$$
(21)

$$\varepsilon^{**} = \inf_{f(\cdot)} \varepsilon^*(f(\cdot)).$$
(22)

Theorem

Let the hypothetical forecasting model be distorted according to (7) and the distortion level $\varepsilon_+ \in [0, \varepsilon^{**}]$. Then the robust p.s. $f_*(\cdot)$ satisfies the following integral equation:

$$f_*(x) = \frac{\iint\limits_{Y\Theta} y \cdot \pi^0(\theta) F_{\varepsilon_+}(f_*(\cdot); x, y, \theta) \, d\theta dy}{\iint\limits_{Y\Theta} \pi^0(\theta) F_{\varepsilon_+}(f_*(\cdot); x, y, \theta) \, d\theta dy}.$$
 (23)

Conclusion

- ► The explicit expression (19) of the guaranteed upper risk allows calculating its deviation from the hypothetical risk for any p.s. f(·) and this deviation is at most of order O(ε₊).
- ► The integral equation (23) allows building iterative procedures for calculating the robust p.s. *f*_{*}(·):

$$f_{(0)} := f_0(x),$$

$$f_{(i)}(x) = \frac{\iint\limits_{Y\Theta} y \cdot \pi^{0}(\theta) F_{\varepsilon_{+}}(f_{(i-1)}(\cdot); x, y, \theta) \, d\theta dy}{\iint\limits_{Y\Theta} \pi^{0}(\theta) F_{\varepsilon_{+}}(f_{(i-1)}(\cdot); x, y, \theta) \, d\theta dy},$$
$$x \in X; i \in \mathbb{N}.$$

References I

- A.Kharin, P.Shlyk On Robustness of Multivariate Bayesian Forecasting under Functional Distortions of Priors, BSU Bulletin, Minsk, vol.2, pp.103-107, 2006 (in russian)
- A.Kharin, P.Shlyk On Robustness of Multivariate Bayesian Forecasting, Proceedings for RobHD2004, Vorau, Austria, 2004.
- A.Kharin Minimax Robustness of Bayesian Forecasting under Functional Distortions of Probability Densities, Austrian Journal of Statistics, vol.31(2&3), pp.177-188, 2002.

The authors would like to thank the Organizing Committee for the invitation and for the financial support making participation in the Conference possible.