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Introduction

The main spheres of Bayesian framework application:

I medical sciences;
I financial markets;
I bio-informatics.

Investigations on robustness of Bayesian forecasting:

I Bayesian Robustness / ed. by G.O.Berger et al., 1995;
I Problemy odporności w byesowskiej analizie statystycznej /

Marek Mȩczarski, 1998;
I Minimax Robustness of Bayesian Forecasting

under Functional Distortions of Probability Densities /
Alexey Kharin, 2002.
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Hypothetical Model of Bayesian Forecasting
Let on a probability space (Ω,F , P) be defined three random
elements:

I the unobserved vector of model parameters
θ ∈ Θ ⊆ Rm, π0(θ);

I the vector of observations x = (xt)T
t=1 ∈ X ⊆ Rn×T, p0(x|θ);

I the value to be forecasted y ∈ Y ⊆ Rn, g0(y|x, θ).
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Hypothetical Risk Functional

The performance of a prediction statistics f (·) : X → Y can be
measured by hypothetical risk functional r0 (f (·)):

r0 (f (·)) = E0
{
ρ2 (f (x), y)

}
=
∫
X

∫
Y

s0(x, y)ρ2 (f (x), y) dydx, (1)

s0(x, y) =
∫
Θ

g0(y|x, θ)p0(x|θ)π0(θ)dθ. (2)

ρ (·, ·) is the Euclidean distance function in Rn.
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Bayesian Prediction Statistics

Hypothetical Bayesian Prediction Density:

q0(y|x) =
∫
Θ

g0(y|x, θ)π0(θ|x) dx. (3)

π0(θ|x) =
p0(x|θ)π0(θ)

p0(x)
, p0(x) =

∫
Θ

p0(x|θ)π0(θ) dθ. (4)

Bayesian Prediction Statistics:

ŷ = f 0(x) = E0 {y|x} =
∫
Y

y · q0(y|x) dy. (5)

Bayesian Prediction Statistics is optimal with respect to the
hypothetical risk functional.
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Distortions of the Hypothetical Model

We consider functional distortions of priors, defined using
χ2-metric:

ρχ2(h1, h2) =
∫
U

(h1(u)− h2(u))2

h1(u)
du, (6)

where p.d.f.s h1(u), h2(u) are defined on U.
Suppose that θ is distributed according to an unknown p.d.f.
πε(·) ∈ Π:

π0(θ) πε(θ) ∈ Π = {Πε : 0≤ ε ≤ ε+} , (7)

Πε =
{
πε(·) : ρχ2(π0(·), πε(·)) = ε2

+

}
.
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Risk Functionals as Robustness Characteristics

We measure the performance of a prediction statistics
f (·) : X → Y by the risk functional r(·, ·):

r (f (·), π̃(·)) = E
{
ρ2 (f (x), y)

}
=
∫
X

∫
Y

s̃(x, y)ρ2 (f (x), y) dxdy. (8)

s̃(x, y) =
∫
Θ

g0(y|x, θ)p0(x|θ)π̃(θ) dθ.

We use the guaranteed upper risk functional r∗ (·) to measure
the robustness of f (·):

r∗ (f (·)) = sup
π̃(·)∈Π

r (f (·), π̃(·)) . (9)
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Robust Prediction Statistics

We aim to find the robust bayesian prediction statistics f∗(·):

r∗ (f∗(·)) = inf
f (·)

r∗ (f (·)) . (10)
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The Conditional Risk Functional

As a Borelean function πε(·) from Π should be a p.d.f., the
following ratios are valid:

πε(θ) ≥ 0, θ ∈ Θ,

∫
Θ

πε(θ) dθ = 1.

The risk functional can be represented as:

r(f (·);πε(·)) =
∫
Θ

πε(θ)r1(f (·); θ) dθ, (11)

r1(f (·); θ) =
∫
X

∫
Y

ρ2(f (x), y)s0(x, y|θ) dydx; (12)

s0(x, y|θ) = g0(y|x, θ)p0(x|θ). (13)
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Critical Distortions Level

The guaranteed upper risk functional can be represented as

r∗(f (·)) = sup
πε(·)∈Π

r(f (·);πε(·)). (14)

Denote the conditional risk variance as
◦
r (f (·); θ):

◦
r (f (·); θ) = r1(f (·); θ)− E0{r1(f (·); θ)}. (15)

Introduce the critical distortions level:

ε∗(f (·)) =

√
D0{r1(f (·); θ)}

sup
θ∈Θ

| ◦r (f (·); θ)|
. (16)
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Extreme Probability Density Function

Theorem
Let the hypothetical forecasting model be distorted according
to (7) and for any p.s. f (·) : X → Y the distortion level
ε+ ∈ [0, ε∗(f (·))]. Then the guaranteed upper risk functional can
be represented as

r∗(f (·)) = r(f (·);π∗(·)), (17)

where the extreme p.d.f. π∗(·) is defined as

π∗(θ) = π0(θ)

(
1 + ε+

◦
r (f (·); θ)√

D0{r1(f (·); θ)}

)
. (18)
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The Guaranteed Upper Risk Functional

Corollary
Under the theorem conditions the guaranteed upper risk can be
represented as

r∗(f (·)) = r0(f (·)) + ε+

√
D0{r1(f (·); θ)}, (19)

where r0(f (·)) is the hypothetical risk functional:

r0(f (·)) =
∫
Θ

r1(f (·); θ)π0(θ) dθ. (20)
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The Robust Prediction Statistics
Denote for x ∈ X, y ∈ Y, θ ∈ Θ:

Fε(f (·); x, y, θ) = s0(x, y|θ) +
ε
(
s0(x, y|θ)− s0(x, y)

) ◦
r (f (·); θ)√

D0{r1(f (·); θ)}
.

(21)

ε∗∗ = inf
f (·)

ε∗(f (·)). (22)

Theorem
Let the hypothetical forecasting model be distorted according
to (7) and the distortion level ε+ ∈ [0, ε∗∗]. Then the robust p.s.
f∗(·) satisfies the following integral equation:

f∗(x) =

∫
Y

∫
Θ

y · π0(θ)Fε+(f∗(·); x, y, θ) dθdy∫
Y

∫
Θ

π0(θ)Fε+(f∗(·); x, y, θ) dθdy
. (23)
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Conclusion

I The explicit expression (19) of the guaranteed upper risk
allows calculating its deviation from the hypothetical risk for
any p.s. f (·) and this deviation is at most of order O(ε+).

I The integral equation (23) allows building iterative
procedures for calculating the robust p.s. f∗(·):

f(0) := f0(x),

f(i)(x) =

∫
Y

∫
Θ

y · π0(θ)Fε+(f(i−1)(·); x, y, θ) dθdy∫
Y

∫
Θ

π0(θ)Fε+(f(i−1)(·); x, y, θ) dθdy
,

x ∈ X; i ∈ N.
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