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Overview of Credit Market (Lipton 2007)

According to a recent BBA survey, by the end of 2006 the size of the
market was about $30 trillion

Main market participants:
1) banks (trading: 35% and loans: 9%)
2) hedge funds (32%)
3) insurers (8%) and others (9%)

Key credit products:
1) single name credit default swaps (CDS) (33%)
2) full index trades (30%) and index tranches (7.6%)
3) bespoke baskets (over 10 names) (12.5%) and others (16.9%)
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Basket Loss Function

Let a basket of credit names include Dmax individual credit de-
fault swaps (CDS-s), where each swap provides protection against a
possible default of swap’s reference name

Let L(t) denote the accumulated percentage loss of the basket at
valuation time t, 0 ≤ L(t) ≤ 1,

Given that percentage loss given default, LGD, is a constant we
calculate the basket loss as:

L(t) = LGD
D(t)

Dmax
, (1)

where D(t) is the number of defaults occurred up to time t out of
Dmax names.

Key modeling problem: how to model D(t)?
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Credit Tranches

Let a credit tranche on the basket have attachment and detach-
ment points a and d, 0 ≤ a < d ≤ 1

Let La,d(t) denote the loss function of this tranche at time t:

La,d(t) =
1

d− a
(min(L(t), d)−min(L(t), a)) . (2)
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Credit Tranche: Premium Leg

Let us denote the annualized payment schedule associated with a
tranche by {Ti}i=0..N , with T0 = 0 and TN = T
Let us introduce ∆i = Ti − Ti−1, i = 1..N

The premium leg, PLa,d(T ), of the credit tranche pays:

1) up-front payment UF a,d(T ) paid in amount per one percent of
tranche notional at contract inception

2) fixed coupon rate Sa,d(T ) at time Ti proportional to the remaining
notional of the tranche at time Ti, i = 1..N

The expected value of its cash flows at time t = 0 is:

PLa,d(T ) = UF a,d(T ) + Sa,d(T )
N∑

i=1

∆iDF (Ti)EQ[1− La,d(Ti)], (3)

where DF (T ) is discount factor for risk-free cash flow at time T
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Credit Tranche: Default Leg

The default leg of the tranche, DLa,d(T ), pays at times Ti, i = 1..N,
tranche losses experienced between (Ti−1, Ti]

The expected value of its cash flows is calculated by:

DLa,d(T ) =
N∑

i=1

DF (Ti)EQ[La,d(Ti)− La,d(Ti−1)]. (4)

Fair tranche spread Sa,d(T ) equates payment and default legs:

Sa,d(T ) =
−UF a,d(T ) +

∑N
i=1 DF (Ti)EQ[La,d(Ti)− La,d(Ti−1)]∑N

i=1 ∆iDF (Ti)EQ[1− La,d(Ti)]
. (5)

Credit tranches are quoted by means of their fair spreads or up-
front payments

7



Structured Credit Products I

Index market is now highly standardized and liquid

Key credit indices: CDX (125 US names), ITRAXX (125 European
names)

Standard tranches (CDX):
0− 100% (full index)
0− 3% (equity tranches)
3− 7% and 7− 15% (mezanie tranches)
15− 30% (senior tranches)
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Structured Credit Products II

Available market data (term structure of):
1) defaults probabilities of single names implied from CDS spreads
2) fair spreads of index tranches

Market for credit structured products is rapidly growing

Main structured products:
1) forward-start tranches
2) options on tranches
3) credit range accruals
4) super senior tranches
5) credit CPPIs and CPDOs
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Dynamical Pricing Model

Static methods (copulas, entropy) have various degrees of success
in fitting the market data per a single maturity

However, pricing of structured products cannot be done within a
static model since these products depend on the evolution of implied
loss surface in time

Due to high dimensionality (125 underlying names) pricing problem
needs to be appropriately formulated

Factor credit model are originated by Duffie-Garleanu (2001), and
they have been enhanced by Chapovsky et al (2006), Mortensen
(2006), and Lipton (2006).

10



Key Features of Our Dynamical Model

1) Similar in spirit to Chapovsky et al (2006) and Lipton (2006)

2) Can be formulated in two versions:
i) bottom-up (consistent with default probabilities of all single names
in credit basket)
ii) top-down (assuming homogeneous default probabilities in credit
basket)

3) In both versions reproduces market data almost exactly across
all maturities and attachment/detachment points

4) Calibration is done in closed-form

5) Pricing problem for structured credit products is formulated
in PDE form
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Dynamical Pricing Model

We introduce the dynamics of market default rate λ(t) and realized
market default rate, I(t0, t), under the pricing measure Q:

dλ(t) = µ(t, λ(t))dt + σ(t, λ(t))dW (t) + J(t, λ(t))dN(t),

dI(t) = Υ(t, λ(t))dt, λ(0) = λ0, I(0) = I0,
(6)

where mapping function Υ(t, λ) is assumed to be positive

W (t) is standard Wiener process

µ(t, λ) and σ(t, λ) are drift and volatility functions of the market
default rate.

N(t) is Poisson process with deterministic intensity γ(t) driving the
arrival of jumps in the market default rate.

Magnitude of jumps, J(t, λ(t)), has probability density function $(J)

Appropriate choice of $(J) is important to fit the market data
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Conditional Default Probability I

Market implied survival probability of k-th name, QM
k (T ), is implied

from the term structure of CDS spreads on k-th name

We introduce conditional survival probability of k-th name, Qk(t, T ),
conditioned on realized market default rate:

Qk(t, T ) = Q(βk(T ), I(t, T )), I(t, T ) =
∫ T

t
Υ(t′, λ(t′))dt′ is given (7)

where Q(βk(T ), I(t, T )) is a non-linear function satisfying:

Q(0, I(t, T )) = 1, Q(β,0) = 1, Q(β,∞) = 0,

Q(t, T, β) := EQ [Q(β(T ), I(t, T ))] < ∞,
(8)

and βk(T ) is the impact factor
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Conditional Default Probability II

Next we introduce the unconditional expected survival probability
of k-th name at time t:

G(t, T, βk(T )) = EQ [Q(β(T ), I(t, T ))]
(
= Q(t, T, βk)

)
(9)

The impact factor βk(T ) is computed in the way to equate uncon-
ditional expected survival probability to market implied default rate:

G(0, T, βk(T )) = QM
k (T ) (10)

For example, Chapovsky et al (2006) applied:

Q(βk(T ), I(t, T )) = e−βkI(t,T )−λc
k(t,T )−λM

k (T ) (11)

Lipton (2006) employed logit survival function:

Q(βk(T ), I(t, T )) =
1

1 + eβk(T )+I(t,T )
(12)

We use a similar one-parameter function
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Green function of Realized Intensity Dynamics

Green function, GλI(t, T, λ, λ′, I, I ′), of the joint evolution of market
default intensity and realized intensity solves Kolmogoroff forward
equation:

GλI
T + (µ(T, λ′)GλI)λ′ −

1

2
(σ2(T, λ′)GλI)λ′λ′ + (Υ(T, λ(T ))GλI)I ′

−γ(T )
∫ ∞

0

(
GλI(λ′ − J)−GλI

)
$(J)dJ

GλI(t, t, λ, λ′, I, I ′) = δ(λ′ − λ)δ(I ′ − I).

(13)

Unconditional Green function of realized intensity, GI(t, T, λ, I, I ′),
is computed by:

GI(t, T, λ, I, I ′) =
∫ ∞

0
GλI(t, T, λ, λ′, I, I ′)dλ′, (14)
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Portfolio Loss Distribution at Maturity Time T

1) A grid of discrete state space, {I ′h}h=1..H, of I(t, T ) along with
corresponding probabilities, {Ph}h=1..H, is constructed by solving Eq.
(14) and (13)

2) Given market implied default intensities {λM
k (T )}k=1..Dmax and the

discretisized distribution of I(t, T ), equation (9) is solved for each
name k, k = 1..Dmax, to obtain {βk(T )}k=1..Dmax

3) Since given a realization of I(t, T ), the default probabilities of in-
dividual names are independent among each other, for each state I ′h,
h = 1..H, portfolio default distribution is non-homogeneous Binomial
distribution with survival probabilities given by {Q(βk(T ), I(t, T ))}k=1..Dmax

4) The distribution of portfolio losses is obtained by computing the
average of the portfolio loss distributions obtained in 3) weighted by
the probability of the corresponding state obtained in 1)
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Calibration of Our Model to CDX IG 8 index Data, May 2007

First part: market implied expected tranche losses (in %)
Second part: market quotes for full index and index tranches
Tranche 5y 7y 10y 5y 7y 10y
0-100% 1.9300% 3.5800% 6.5800% 36.00 48.00 62.00

0-3% 52.3700% 77.8600% 96.6200% 24.94% 41.19% 52.06%
3-7% 5.2600% 17.1500% 50.6200% 99.00 228.00 493.00

7-10% 1.1600% 3.8500% 14.3300% 21.50 49.50 125.50
10-15% 0.5100% 1.8800% 6.8500% 9.50 24.00 59.00
15-30% 0.2100% 0.7200% 2.2200% 3.88 9.19 19.13

First part: model expected tranche losses (in %)
Second part: differences between the market and model ex-
pected tranche losses (in %)
Tranche 5y 7y 10y 5y 7y 10y
0-100% 1.9324% 3.5459% 6.5877% 0.0024% -0.0341% 0.0077%

0-3% 52.3699% 77.8610% 96.6190% -0.0001% 0.0010% -0.0010%
3-7% 5.2599% 17.1512% 50.6199% -0.0001% 0.0012% -0.0001%

7-10% 1.1599% 3.8516% 14.3295% -0.0001% 0.0016% -0.0005%
10-15% 0.5100% 1.8801% 6.8501% 0.0000% 0.0001% 0.0001%
15-30% 0.2088% 0.7361% 2.2163% -0.0012% 0.0161% -0.0037%
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Implied Distribution of Realized Intensity

At 10y maturity, the model implies a heavy right tail to fit implied
losses in mezzanine and senior tranches.
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Implied loss distributions

L′ stands for percentage loss.
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Implied Cumulative Loss Distributions

Cumulative loss distribution: PQ[L(t) > L′]
Our model admits no arbitrage in maturity dimension

20



The Density of Implied Loss Surface

Our model produces smooth arbitrage-free loss distribution both
in strike and maturity dimension consistently with market data

21



Pricing of Structured Credit Products in PDE formulation

In general, we need to solve backward Kolmogoroff equation for
value function, U(t, T, λ, I, D), of a credit product with:
1) payoff function u1(λ, I, D) at maturity time T
2) reward function u2(t, λ, I, D) at time t, 0 < t < T

Ut + µ(t, λ)Uλ +
1

2
σ2(t, λ)Uλλ + Σ(D)Υ(t, λ)UI ′

+ γ(t)
∫ ∞

0
(U(λ + J)− U)$(J)dJ

+
Dmax−D∑
∆D=1

Λ(t, λ, I, D,∆D)(U(D + ∆D)− U)

− r(t)U = −u2(t, λ, I, D),

U(T, T, λ, I, D) = u1(λ, I, D)

(15)

where r(t) is deterministic interest rate
Σ(D) =

∑Dmax
k=D

∂
∂IG(t, T, βk(T ))

Λ(t, λ, I, D,∆D) is loss transition rate
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Loss Transition Rate

Λ(t, λ, I, D,∆D) is auxiliary function which describes arrival of ∆D
defaults, ∆D = 1, .., Dmax −D, during infinitesimal time interval
[t, t + δt] given the state of the dynamics at time t

Two ways to specify Λ(t, λ, I, D,∆D):

1) bottom-up approach: implicit specification by state variables and
model parameters

2) top-down approach: explicit specification by assuming homoge-
neous default probabilities

In our formulation, the latter specification results in aggregated dy-
namic correlation model, which is:

1) computationally simpler than the full model

2) reproduces market data as exactly as the full model does
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