Susanne Saminger^{1,2}

¹Department of Knowledge-Based Mathematical Systems Johannes Kepler University Linz, Austria

susanne.saminger@jku.at

²Dipartimento di Matematica "Ennio De Giorgi" Università del Salento, Lecce, Italy

susanne.saminger@unile.it

6th Conference on Multivariate Distributions with Fixed Marginals, June 27, 2007

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Outline

- **3** Special case: Binary aggregation operators
- General case: Increasing 2-increasing functions

5 Examples revisited

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Introduction

Binary 2-increasing aggregation operator

(Durante et al., 2007)

Definition

A function A: $[0,1]^2 \rightarrow [0,1]$ is called a binary aggregation operator if

•
$$A(0,0) = 0$$
, $A(1,1) = 1$;

•
$$A(x, y) \leq A(x', y')$$
, whenever $x \leq x'$, $y \leq y'$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

- E - N June, 7, 2007

- 32

Introduction

Binary 2-increasing aggregation operator

(Durante et al., 2007)

Definition

A function $A \colon [0,1]^2 \to [0,1]$ is called a binary aggregation operator if

•
$$A(0,0) = 0$$
, $A(1,1) = 1$;

•
$$A(x, y) \leq A(x', y')$$
, whenever $x \leq x'$, $y \leq y'$.

Definition

A function $A: \mathbb{R}^2 \to \mathbb{R}$ is called 2-increasing (supermodular) if, for all $[x_1, x_2] \times [y_1, y_2] \subset \mathbb{R}^2$ with $x_1 \leq x_2$ and $y_1 \leq y_2$,

 $V_{A}([x_{1},x_{2}]\times[y_{1},y_{2}]):=A(x_{1},y_{1})+A(y_{1},y_{2})-A(x_{1},y_{2})-A(x_{2},y_{1})\geq 0.$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 22

Introduction

Binary 2-increasing aggregation operator

(Durante et al., 2007)

Proposition

Consider a 2-increasing binary aggregation operator A.

• Then, for every $f, g: [0,1] \rightarrow [0,1]$ with f(0) = g(0) = 0 and f(1) = g(1) = 1, the function $A_{f,g}: [0,1]^2 \rightarrow [0,1]$, given by

$$A_{f,g}(x,y) = A(f(x),g(y))$$

is a 2-increasing binary aggregation operator.

Introduction

Binary 2-increasing aggregation operator

Proposition

Consider a 2-increasing binary aggregation operator A.

• Then, for every $f, g: [0,1] \rightarrow [0,1]$ with f(0) = g(0) = 0 and f(1) = g(1) = 1, the function $A_{f,g}: [0,1]^2 \rightarrow [0,1]$, given by

$$A_{f,g}(x,y) = A(f(x),g(y))$$

is a 2-increasing binary aggregation operator.

• Then, for given $f: [0,1] \rightarrow [0,1]$ with f(0) = 0 and f(1) = 1, the function $f \circ A: [0,1]^2 \rightarrow [0,1]$, given by

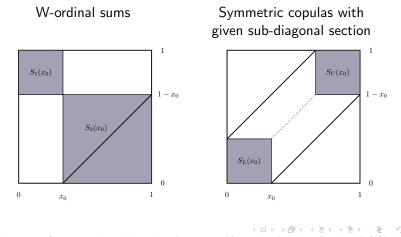
$$f \circ A(x, y) = f(A(x, y))$$

is a 2-increasing binary aggregation operator if and only if f is convex and increasing.

Introduction

(Quasi-)copulas with given subdiagonal section

(Quesada-Molina et al., 2007)

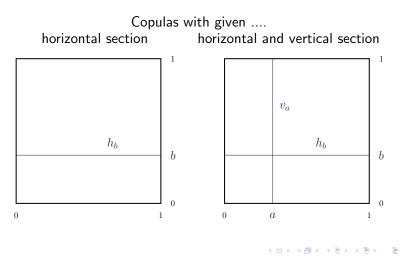


S.Saminger, On constructions and boundaries of some type of 2-increasing functions, J

Introduction

Copulas with given horizontal and/or vertical sections

(Durante et al., 2007; Klement et al., 2007)



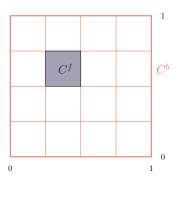
S.Saminger, On constructions and boundaries of some type of 2-increasing functions, June, 7, 2007

Introduction

Copulas constructed on an orthogonal grid

(De Baets et al., 2007)

Copulas based on some foreground and background copula



S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Introduction

Copulas constructed on an orthogonal grid

Theorem

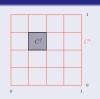
Consider

- two copulas C^b and C^f ,
- a rectangle $[a_1,a_2] imes [b_1,b_2]\subseteq [0,1]^2$, and
- a positive constant μ.

Then A: $[0,1]^2 \rightarrow [0,1],$ defined, for all $x,y \in [0,1],$ by

$$A(x,y) = \begin{cases} C^{b}(x,y) + \mu \left(C^{f}(\frac{x-a_{1}}{a_{2}-a_{1}}, \frac{y-b_{1}}{b_{2}-b_{1}}) - C^{b}(\frac{x-a_{1}}{a_{2}-a_{1}}, \frac{y-b_{1}}{b_{2}-b_{1}}) \right), \\ if(x,y) \in [a_{1}, a_{2}] \times [b_{1}, b_{2}], \\ C^{b}(x,y), & otherwise, \end{cases}$$

is a copula whenever $(x, y) \mapsto C^b(x, y) - \mu C^b(\frac{x-a_1}{a_2-a_1}, \frac{y-b_1}{b_2-b_1})$ is increasing and 2-increasing on $[a_1, a_2] \times [b_1, b_2]$.



Problem statement

Problem statement

Rectangular patchwork

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2] \subseteq [0, 1]^2$ with $a_1 < a_2$, $b_1 < b_2$;
- a binary function $A \colon [0,1]^2 \to [0,1]$ which is also 2-increasing;
- a binary function $B \colon R \to [0, 1]$.

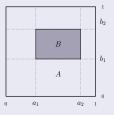
Then the function $A \square_R B \colon [0,1]^2 \to [0,1]$ defined by

$$A\Box_R B(x,y) = \begin{cases} B(x,y), & \text{if } (x,y) \in R, \\ A(x,y), & \text{otherwise,} \end{cases}$$

is called rectangular patchwork of A and B on $[0,1]^2$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

3



イロト イヨト イヨト

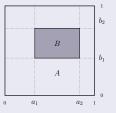
Problem statement

Problem statement

Problem statement

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2] \subseteq [0, 1]^2$ with $a_1 < a_2$, $b_1 < b_2$;
- a binary function $A \colon [0,1]^2 \to [0,1]$ which is also 2-increasing;
- a binary function $B: R \to [0, 1]$ such that $B(a_i, y) = A(a_i, y)$ for all $y \in [b_1, b_2]$ and $B(x, b_i) = A(x, b_i)$ for all $x \in [a_1, a_2]$.



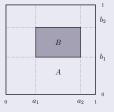
Problem statement

Problem statement

Problem statement

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2] \subseteq [0, 1]^2$ with $a_1 < a_2$, $b_1 < b_2$;
- a binary function $A \colon [0,1]^2 \to [0,1]$ which is also 2-increasing;
- a binary function $B: R \to [0, 1]$ such that $B(a_i, y) = A(a_i, y)$ for all $y \in [b_1, b_2]$ and $B(x, b_i) = A(x, b_i)$ for all $x \in [a_1, a_2]$.



For $A \square_R B$ to be 2-increasing:

- What are the possible choices for B?
- What are the largest and smallest possible B's?
- How can such *B* be represented?

S.Saminger, On constructions and boundaries of some type of 2-increasing functions, Ju

Problem statement

Set of margins

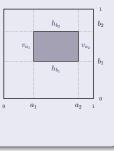
Set of margins

Definition

Consider arbitrary $a_1, a_2, b_1, b_2 \in [0, 1]$ with $a_1 < a_2$ and $b_1 < b_2$.

A set $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ of four increasing functions h_{b_i} : $[a_1, a_2] \rightarrow [0, 1], v_{a_i}$: $[b_1, b_2] \rightarrow [0, 1], i = 1, 2$, is called a set of margins if the following conditions are fulfilled:

$$\begin{array}{ll} \mathsf{M1}) & h_{b_1}(a_1) = v_{a_1}(b_1), \ h_{b_1}(a_2) = v_{a_2}(b_1), \\ & h_{b_2}(a_1) = v_{a_1}(b_2), \ h_{b_2}(a_2) = v_{a_2}(b_2). \end{array}$$



Problem statement

Set of margins

Set of margins

Definition

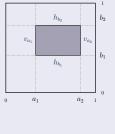
Consider arbitrary $a_1, a_2, b_1, b_2 \in [0, 1]$ with $a_1 < a_2$ and $b_1 < b_2$.

A set $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ of four increasing functions h_{b_i} : $[a_1, a_2] \rightarrow [0, 1], v_{a_i}$: $[b_1, b_2] \rightarrow [0, 1], i = 1, 2$, is called a set of margins if the following conditions are fulfilled:

$$\begin{array}{ll} \mathsf{M1}) & h_{b_1}(a_1) = v_{a_1}(b_1), \ h_{b_1}(a_2) = v_{a_2}(b_1), \\ & h_{b_2}(a_1) = v_{a_1}(b_2), \ h_{b_2}(a_2) = v_{a_2}(b_2). \end{array}$$

(M2) For all
$$x_1, x_2 \in [a_1, a_2]$$
 and all $y_1, y_2 \in [b_1, b_2]$
with $x_1 \le x_2, y_1 \le y_2$:

$$\begin{split} h_{b_2}(x_2) + h_{b_1}(x_1) &\geq h_{b_2}(x_1) + h_{b_1}(x_2); \\ v_{a_2}(y_2) + v_{a_1}(y_1) &\geq v_{a_2}(y_1) + v_{a_1}(y_2). \end{split}$$



S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Problem statement

Set of margins

Set of margins

Properties of margins

Consider

- \bullet arbitraray $a_1,a_2,b_1,b_2 \in [0,1]$ such that $a_1 < a_2$ and $b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Then for all $x, x' \in [a_1, a_2]$ and for all $y, y' \in [b_1, b_2]$ with $x' \ge x$ and $y' \ge y$:

$$\begin{split} h_{b_2}(x') - h_{b_1}(x') &\geq h_{b_2}(x) - h_{b_1}(x); \\ v_{a_2}(y') - v_{a_1}(y') &\geq v_{a_2}(y) - v_{a_1}(y). \end{split}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Problem statement

Set of margins

Set of margins

Properties of margins

Consider

- $\bullet\,$ arbitraray $a_1,a_2,b_1,b_2\in [0,1]$ such that $a_1 < a_2$ and $b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Then for all $x, x' \in [a_1, a_2]$ and for all $y, y' \in [b_1, b_2]$ with $x' \ge x$ and $y' \ge y$:

$$\begin{split} h_{b_2}(x') - h_{b_1}(x') &\geq h_{b_2}(x) - h_{b_1}(x);\\ v_{a_2}(y') - v_{a_1}(y') &\geq v_{a_2}(y) - v_{a_1}(y). \end{split}$$

$$egin{aligned} h_{b_2}(x) &\geq h_{b_1}(x) + h_{b_2}(a_1) - h_{b_1}(a_1) \ &= h_{b_1}(x) + v_{a_1}(b_2) - v_{a_1}(b_1) \geq h_{b_1}(x); \ v_{a_2}(y) &\geq v_{a_1}(y) + v_{a_2}(b_1) - v_{a_1}(b_1) \ &= v_{a_1}(y) + h_{b_1}(a_2) - h_{b_1}(a_1) \geq v_{a_1}(y). \end{aligned}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Problem statement

Set of margins

Set of margins

Problemstatement revisited

Consider

- arbitraray $a_1, a_2, b_1, b_2 \in [0,1]$ such that $a_1 < a_2$ and $b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Problem statement

Set of margins

Set of margins

Problemstatement revisited

Consider

- arbitraray $a_1, a_2, b_1, b_2 \in [0,1]$ such that $a_1 < a_2$ and $b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

We will denote by \mathcal{M}_2 the set of all increasing 2-increasing functions $A: [a_1, a_2] \times [b_1, b_2] \rightarrow [0, 1]$ coinciding in its set of margins with M.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Problem statement

Set of margins

Set of margins

Problemstatement revisited

Consider

- arbitraray $a_1, a_2, b_1, b_2 \in [0,1]$ such that $a_1 < a_2$ and $b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

We will denote by \mathcal{M}_2 the set of all increasing 2-increasing functions $A: [a_1, a_2] \times [b_1, b_2] \rightarrow [0, 1]$ coinciding in its set of margins with M.

- Is $\mathcal{M}_2 = \emptyset$?
- What are its bounds?
- How can it be represented?

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Representation

For every 2-increasing binary aggregation operator $A: [0,1]^2 \rightarrow [0,1]$ with margins h_0^A , h_1^A , v_0^A , and v_1^A , there exists a copula C such that, for all $x, y \in [0,1]$,

$$A(x,y) = C(h_1^A(x), v_1^A(y)).$$

Е १२९

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Representation

For every 2-increasing binary aggregation operator $A: [0,1]^2 \rightarrow [0,1]$ with margins h_0^A , h_1^A , v_0^A , and v_1^A , there exists a copula C such that, for all $x, y \in [0,1]$,

$$A(x,y) = C(h_1^A(x), v_1^A(y)).$$

C is uniquely determined on $\operatorname{Ran}_{h_1} \times \operatorname{Ran}_{v_1}$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case:
$$R=[0,1]^2$$
, $\mathsf{Ran}_A=[0,1]$

Arithmetic mean

Consider the arithmetic mean $A(x, y) = \frac{x+y}{2}$. Then its upper boundaries h_1^A , v_1^A are continuous and given by

$$h(x) := h_1^A(x) = v_1^A(x) = \frac{1}{2}(1+x).$$

Then

$$A(x, y) = W(h(x), h(y)) = \max(h(x) + h(y) - 1, 0)$$

but also A(x, y) = C(h(x), h(y)) with C being the copula

$$C(u, v) = \begin{cases} 0, & \text{if } (u, v) \in [0, 1/2]^2, \\ \min(u, v - \frac{1}{2}), & \text{if } (u, v) \in [0, 1/2[\times]1/2, 1], \\ \min(v, u - \frac{1}{2}), & \text{if } (u, v) \in]1/2, 1] \times [0, 1/2[, \\ u + v - 1, & \text{if } (u, v) \in [1/2, 1]^2. \end{cases}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case:
$$R=[0,1]^2$$
, $\mathsf{Ran}_A=[0,1]$

Construction

For every set of margins $\{h_0,v_0,h_1,v_1\}$ and every copula C, the function $A_c\colon [0,1]^2\to [0,1],$

$$A_C(x,y) = C(h_1(x),v_1(y))$$

is a 2-increasing binary aggregation operator, whenever $h_1(1) = v_1(1) = 1$ and $h_1(0) = 0$ or $v_1(0) = 0$.

Special case: Binary aggregation operators

Special case:
$$R = [0,1]^2$$
, $\mathsf{Ran}_A = [0,1]$

Construction

For every set of margins $\{h_0,v_0,h_1,v_1\}$ and every copula C, the function $A_c\colon [0,1]^2\to [0,1],$

$$A_C(x,y) = C(h_1(x),v_1(y))$$

is a 2-increasing binary aggregation operator, whenever $h_1(1) = v_1(1) = 1$ and $h_1(0) = 0$ or $v_1(0) = 0$. However.

$$A_C \in \{f,g,h_1,v_1\}_2$$

with

$$\begin{split} f: [0,1] &\to [0,1], \quad f(x) := C(h_1(x),v_1(0)); \\ g: [0,1] &\to [0,1], \quad g(y) := C(h_1(0),v_1(y)). \end{split}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case:
$$R = [0,1]^2$$
, $\mathsf{Ran}_A = [0,1]$

Representation

For every 2-increasing binary aggregation operator $A: [0,1]^2 \rightarrow [0,1]$ with margins $M^A = \{h_0^A, h_1^A, v_0^A, v_1^A\}$, with

$$\lambda_A := V_A([0,1]^2) > 0,$$

there exists a copula C such that

$$A(x,y) = \lambda_A C\left(\frac{h_1^A(x) - h_0^A(x) - h_1^A(0)}{\lambda_A}, \frac{v_1^A(y) - v_0^A(y) - v_1^A(0)}{\lambda_A}\right) + h_0^A(x) + v_0^A(y).$$

for all $x, y \in [0, 1]$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 32

Special case: Binary aggregation operators

Special case:
$$R = [0,1]^2$$
, $\mathsf{Ran}_A = [0,1]$

Construction

Consider a 2-increasing binary aggregation operator $A: [0,1]^2 \rightarrow [0,1]$ with margins $M^A = \{h_0^A, h_1^A, v_0^A, v_1^A\}$, such that $\lambda_A := V_A([0,1]^2) > 0$.

Then, for every copula C, the function $A^C \colon [0,1]^2 \to [0,1]$,

$$A^{C}(x,y) := \lambda_{A}C\left(\frac{h_{1}^{A}(x) - h_{0}^{A}(x) - h_{1}^{A}(0)}{\lambda_{A}}, \frac{v_{1}^{A}(y) - v_{0}^{A}(y) - v_{1}^{A}(0)}{\lambda_{A}}\right) + h_{0}^{A}(x) + v_{0}^{A}(y)$$

is a 2-increasing binary aggregation operator.

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Construction

Consider a 2-increasing binary aggregation operator $A: [0,1]^2 \rightarrow [0,1]$ with margins $M^A = \{h_0^A, h_1^A, v_0^A, v_1^A\}$, such that $\lambda_A := V_A([0,1]^2) > 0$.

Then, for every copula C, the function $A^C \colon [0,1]^2 \to [0,1]$,

$$\mathcal{A}^{C}(x,y) := \lambda_{A}C\left(\frac{h_{1}^{A}(x) - h_{0}^{A}(x) - h_{1}^{A}(0)}{\lambda_{A}}, \frac{v_{1}^{A}(y) - v_{0}^{A}(y) - v_{1}^{A}(0)}{\lambda_{A}}\right) + h_{0}^{A}(x) + v_{0}^{A}(y)$$

is a 2-increasing binary aggregation operator.

Moreover,

$$A^C \in \mathcal{M}_2^A$$
.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Bounds

(Durante et al. (2007))

Consider a set of margins $M = \{h_0, h_1, v_0, v_1\}$. Then, for all $A \in \mathcal{M}_2$

$$A_* \leq A \leq A^*$$

with

$$\begin{split} A_*(x,y) &:= \max(h_0(x) + v_0(y), h_1(x) + v_1(y) - 1); \\ A^*(x,y) &:= \min(h_1(x) + v_0(y) - h_1(0), h_0(x) + v_1(y) - h_0(1)). \end{split}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 32

イロト イポト イヨト イヨト

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Bounds

(Durante et al. (2007))

Consider a set of margins $M = \{h_0, h_1, v_0, v_1\}$. Then, for all $A \in \mathcal{M}_2$

$$A_* \leq A \leq A^*$$

with

$$\begin{aligned} A_*(x,y) &:= \max(h_0(x) + v_0(y), h_1(x) + v_1(y) - 1); \\ A^*(x,y) &:= \min(h_1(x) + v_0(y) - h_1(0), h_0(x) + v_1(y) - h_0(1)). \end{aligned}$$

Noreover, $A_*, A^* \in \mathcal{M}_2.$

June, 7, 2007

3

4 3 b

Special case: Binary aggregation operators

Special case: $R = [0, 1]^2$, $Ran_A = [0, 1]$

Bounds

Consider a set of margins $M = \{h_0, h_1, v_0, v_1\}$.

Then, for all $A \in \mathcal{M}_2$, $A_* \leq A \leq A^*$, with

$$\begin{split} A_*(x,y) &:= \max(h_0(x) + v_0(y), h_1(x) + v_1(y) - 1); \\ A^*(x,y) &:= \min(h_1(x) + v_0(y) - h_1(0), h_0(x) + v_1(y) - h_0(1)). \end{split}$$

The role of λ

• If
$$A \in \mathcal{M}_2$$
 and $\lambda_A > 0$, then $A_* = A^W$, $A^* = A^M$.

• If
$$A \in \mathcal{M}_2$$
 and $\lambda_A = 0$, then $A_* = A = A^*$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

- 32

∃ ∃ >

General case: Increasing 2-increasing functions

General case: $R \subset [0, 1]^2$

Notation

For every $a, b \in \mathbb{R}$, denote by $arphi_{a,b}$ the linear transformation

$$\varphi_{a,b} \colon [a,b] \to [0,1], \quad \varphi_{a,b}(x) := \frac{x-a}{b-a}.$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

< 注→ 注

< ロト < 回 > < 回 >

General case: Increasing 2-increasing functions

General case: $R \subset [0, 1]^2$

Proposition

Consider a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

< ∃ >

3

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Proposition

Consider a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$.

If $A: [0,1]^2 \to [0,1]$ is a 2-increasing binary aggregation operator, then $A_{\varphi_{a_1,a_2},\varphi_{b_1,b_2},\varphi_{c_1,c_2}}: R \to [0,1]$,

$$A_{\varphi_{a_1,a_2},\varphi_{b_1,b_2},\varphi_{c_1,c_2}}(x,y) := \varphi_{c_1,c_2} \circ A(\varphi_{a_1,a_2}(x),\varphi_{b_1,b_2}(y))$$

is a 2-increasing increasing function and with range $[c_1, c_2]$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

- 3

- 不同下 不良下 不良下

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Proposition

Consider a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$.

If $A: R \to [0, 1]$ is an increasing 2-increasing function with $\operatorname{Ran}_{\mathcal{A}} = [c_1, c_2]$, then $A_{\varphi_{a_1, a_2}^{-1}, \varphi_{b_1, b_2}^{-1}, \varphi_{a_1, c_2}^{-1}} : [0, 1]^2 \to [0, 1]$,

$$A_{\varphi_{a_1,a_2}^{-1},\varphi_{b_1,b_2}^{-1},\varphi_{c_1,c_2}^{-1}}(x,y) := \varphi_{c_1,c_2}^{-1} \circ A(\varphi_{a_1,a_2}^{-1}(x),\varphi_{b_1,b_2}^{-1}(y))$$

is a binary 2-increasing aggregation operator.

June, 7, 2007

- 《 同 》 《 三 》 《 三 》 《 同 》 ~ ()

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Representation

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a 2-increasing binary function $A \colon R \to [0, 1]$ with margins h_{b_1} , h_{b_2} , v_{a_1} , v_{a_2} .

- 32

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Representation

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a 2-increasing binary function $A \colon R \to [0, 1]$ with margins h_{b_1} , h_{b_2} , v_{a_1} , v_{a_2} .

Then there exists a copula C such that, for all $(x, y) \in R$,

$$A(x,y) = \varphi_{c_1,c_2}^{-1} \Big(C \big(\varphi_{c_1,c_2}(h_{b_2}(x)), \varphi_{c_1,c_2}(v_{a_2}(y)) \big) \Big)$$

where $c_1 = A(a_1, b_1)$ and $c_2 = A(a_2, b_2)$.

- 20

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Representation

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2$, $b_1 < b_2$ and
- a 2-increasing binary function $A: R \to [0, 1]$ with margins h_{b_1} , $h_{b_2}, v_{a_1}, v_{a_2}$ such that $\lambda_A > 0$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

3

General case: Increasing 2-increasing functions

General case: $R \subset [0, 1]^2$

Representation

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2$, $b_1 < b_2$ and
- a 2-increasing binary function $A \colon R \to [0, 1]$ with margins h_{b_1} , h_{b_2} , v_{a_1} , v_{a_2} such that $\lambda_A > 0$.

Then there exists a copula C such that

$$A = (A_{\varphi_{a_1,a_2},\varphi_{b_1,b_2},\varphi_{c_1,c_2}}^C)_{\varphi_{a_1,a_2}^{-1},\varphi_{b_1,b_2}^{-1},\varphi_{c_1,c_2}^{-1}}$$

where $c_1 = A(a_1, b_1)$ and $c_2 = A(a_2, b_2)$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

3

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Construction

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ such that $\lambda > 0$.

Then, for any copula C,

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Construction

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ such that $\lambda > 0$.

Then, for any copula C, the function A^C : $[a_1, a_2] \times [b_1, b_2] \rightarrow [0, 1]$,

$$A^{C}(x,y) = \lambda C\left(\frac{V_{14}(x)}{\lambda}, \frac{V_{12}(y)}{\lambda}\right) + h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1)$$

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Construction

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ such that $\lambda > 0$.

Then, for any copula C, the function A^C : $[a_1, a_2] \times [b_1, b_2] \rightarrow [0, 1]$,

$$A^{C}(x,y) = \lambda C\left(\frac{V_{14}(x)}{\lambda}, \frac{V_{12}(y)}{\lambda}\right) + h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1)$$

with

$$\begin{split} V_{14}(x) &:= h_{b_2}(x) - h_{b_2}(a_1) - h_{b_1}(x) + h_{b_1}(a_1); \\ V_{12}(y) &:= v_{a_2}(y) - v_{a_2}(b_1) - v_{a_1}(y) + v_{a_1}(b_1) \end{split}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions, J

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Construction

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ such that $\lambda > 0$.

Then, for any copula C, the function A^C : $[a_1,a_2] \times [b_1,b_2] \rightarrow [0,1]$,

$$A^{C}(x,y) = \lambda C\left(\frac{V_{14}(x)}{\lambda}, \frac{V_{12}(y)}{\lambda}\right) + h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1)$$

with

$$\begin{split} V_{14}(x) &:= h_{b_2}(x) - h_{b_2}(a_1) - h_{b_1}(x) + h_{b_1}(a_1); \\ V_{12}(y) &:= v_{a_2}(y) - v_{a_2}(b_1) - v_{a_1}(y) + v_{a_1}(b_1) \end{split}$$

is an increasing 2-increasing function on $[a_1, a_2] \times [b_1, b_2]$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Construction

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}$ such that $\lambda > 0$.

Then, for any copula C, the function A^C : $[a_1, a_2] \times [b_1, b_2] \rightarrow [0, 1]$,

$$A^{C}(x,y) = \lambda C\left(\frac{V_{14}(x)}{\lambda}, \frac{V_{12}(y)}{\lambda}\right) + h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1)$$

with

$$\begin{split} V_{14}(x) &:= h_{b_2}(x) - h_{b_2}(a_1) - h_{b_1}(x) + h_{b_1}(a_1); \\ V_{12}(y) &:= v_{a_2}(y) - v_{a_2}(b_1) - v_{a_1}(y) + v_{a_1}(b_1) \end{split}$$

is an increasing 2-increasing function on $[a_1,a_2] imes[b_1,b_2].$ Moreover, $A^C\in\mathcal{M}_2.$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Bounds

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Then, for all $A \in \mathcal{M}_2$,

 $A_* \leq A \leq A^*$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 31

イロト 不同ト 不同ト 不同ト

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Bounds

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Then, for all $A \in \mathcal{M}_2$,

$$A_* \leq A \leq A^*$$

with

$$\begin{aligned} \mathcal{A}_*(x,y) &= \max(h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1), h_{b_2}(x) + v_{a_2}(y) - h_{b_2}(a_2)), \\ \mathcal{A}^*(x,y) &= \min(h_{b_2}(x) + v_{a_1}(y) - h_{b_2}(a_1), h_{b_1}(x) + v_{a_2}(y) - h_{b_1}(a_2)). \end{aligned}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 2

イロト イヨト イヨト

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Bounds

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a set of margins $M = \{h_{b_1}, h_{b_2}, v_{a_1}, v_{a_2}\}.$

Then, for all $A \in \mathcal{M}_2$,

$$A_* \leq A \leq A^*$$

with

$$\begin{aligned} \mathcal{A}_*(x,y) &= \max(h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1), h_{b_2}(x) + v_{a_2}(y) - h_{b_2}(a_2)), \\ \mathcal{A}^*(x,y) &= \min(h_{b_2}(x) + v_{a_1}(y) - h_{b_2}(a_1), h_{b_1}(x) + v_{a_2}(y) - h_{b_1}(a_2)). \end{aligned}$$

Moreover, $A_*, A^* \in \mathcal{M}_2$.

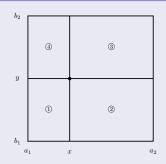
3

イロト 不同ト 不同ト 不同ト

General case: Increasing 2-increasing functions

General case: $R \subset [0,1]^2$

Bounds — geometric interpretation



$$\begin{aligned} A_*(x,y) &= \max(h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1), h_{b_2}(x) + v_{a_2}(y) - h_{b_2}(a_2)); \\ A^*(x,y) &= \min(h_{b_2}(x) + v_{a_1}(y) - h_{b_2}(a_1), h_{b_1}(x) + v_{a_2}(y) - h_{b_1}(a_2)). \end{aligned}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

E

General case: Increasing 2-increasing functions

General case: $R \subset [0, 1]^2$

Representation

Consider

- a rectangle $R = [a_1, a_2] \times [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in [0, 1]$ such that $a_1 < a_2, b_1 < b_2$ and
- a 2-increasing binary function $A: R \to [0, 1]$ with margins h_{b_1} , h_{b_2} , v_{a_1} , v_{a_2} such that $\lambda_A = 0$.

Then $A = A_* = A^*$, i.e., for all $(x, y) \in R$,

$$\begin{aligned} A(x,y) &= h_{b_1}(x) + v_{a_1}(y) - h_{b_1}(a_1) \\ &= h_{b_2}(x) + v_{a_2}(y) - h_{b_2}(a_2) \\ &= h_{b_2}(x) + v_{a_1}(y) - h_{b_2}(a_1) \\ &= h_{b_1}(x) + v_{a_2}(y) - h_{b_1}(a_2). \end{aligned}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

- 32

イロト イヨト イヨト

Examples revisited

W-ordinal sums

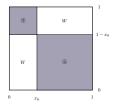
•
$$R_2 = [0, x_0] \times [1 - x_0, 1]$$
:
Since $\lambda_{A_2} = x_0$, for any copula C_2 ,
 $A_2(x, y) = x_0 C_2\left(\frac{x}{x_0}, \frac{y + x_0 - 1}{x_0}\right)$

for all $(x, y) \in R_2$, is appropriate.

•
$$R_4 = [x_0, 1] \times [0, 1 - x_0]$$
:
Then $\lambda_{A_4} = 1 - x_0$, for any copula C_4 ,

$$A_4(x,y) = (1-x_0)C_4\left(\frac{x-x_0}{1-x_0}, \frac{y}{1-x_0}\right),$$

for all $(x, y) \in R_4$, is appropriate.



S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

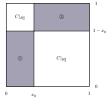
Examples revisited

W-ordinal sums

•
$$R_1 = [0, x_0] \times [0, 1 - x_0]$$
:
Since $\lambda_{A_1} = 0$, therefore
 $A_1(x, y) = (A_1)_*(x, y) = (A_1)^*(x, y),$
 $A_1(x, y) = 0 = W(x, y),$
for all $(x, y) \in R_1$.
• $R_3 = [x_0, 1] \times [1 - x_0, 1]$:
Then $\lambda_{A_3} = 1 - x_0 - (1 - x_0) = 0$, therefore
 $A_3(x, y) = (A_3)_*(x, y) = (A_3)^*(x, y),$
 $A_3(x, y) = x + y - 1 = W(x, y),$

for all $(x, y) \in R_3$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,



・ロト ・日下・ ・ ヨト

★ 문 ▶ 문

Examples revisited

Copulas with given horizontal and vertical section

Assume that
$$C(a, b) = c$$
 with $0 < c < \min(a, b)$
such that $\lambda_{R_i} > 0$, $i = 1, ..., 4$.
Choose copulas C_1 , C_2 , C_3 , C_4 .

$$\begin{aligned} A^{C_1}(x,y) &= cC_1\left(\frac{h_b(x)}{c}, \frac{v_a(y)}{c}\right), \\ A^{C_2}(x,y) &= (b-c)C_2\left(\frac{h_b(x)-c}{b-c}, \frac{y}{b-c}\right), \\ A^{C_3}(x,y) &= (1+c-a-b)C_3\left(\frac{x+c-h_b(x)-a}{1+c-a-b}, \frac{y+c-v_a(y)-b}{1+c-a-b}\right) + h_b(x) + v_a(y) - c, \\ A^{C_4}(x,y) &= (a-c)C_4\left(\frac{x-h_b(x)}{a-c}, \frac{v_a(y)-c}{a-c}\right), \\ C(x,y) &= \begin{cases} A^{C_1}(x,y), & \text{if } (x,y) \in [0,a] \times [0,b], \\ A^{C_2}(x,y), & \text{if } (x,y) \in [a,1] \times [0,b], \\ A^{C_3}(x,y), & \text{if } (x,y) \in [a,1] \times [b,1], \\ A^{C_4}(x,y), & \text{if } (x,y) \in [0,a] \times [b,1]. \end{cases} \end{aligned}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Examples revisited

Copulas constructed on an orthogonal grid

• Choice of C_b determines whether $\lambda > 0$ or $\lambda = 0$.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Examples revisited

Copulas constructed on an orthogonal grid

- Choice of C_b determines whether $\lambda > 0$ or $\lambda = 0$.
- When $C_b = \Pi$, $\lambda > 0$ for all rectangles,

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

June, 7, 2007

Examples revisited

Copulas constructed on an orthogonal grid

- Choice of C_b determines whether $\lambda > 0$ or $\lambda = 0$.
- When $C_b = \Pi$, $\lambda > 0$ for all rectangles, then for arbitrary foreground copula C_f

$$C(x,y) = \begin{cases} xy - (x - a_1)(y - b_1) \\ +(a_2 - a_1)(b_2 - b_1)C_f(\frac{x - a_1}{a_2 - a_1}, \frac{y - b_1}{b_2 - b_1}), \\ & \text{if } (x, y) \in [a_1, a_2] \times [b_1, b_2] \\ xy, & \text{otherwise.} \end{cases}$$

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Fine

Concluding remarks

- Motivation, examples;
- Set of margins and its properties;
- 2-increasing functions with particular domain and range.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Fine

Concluding remarks

- Motivation, examples;
- Set of margins and its properties;
- 2-increasing functions with particular domain and range.

www.flll.jku.at/mediawiki

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,

Fine

Concluding remarks

- Motivation, examples;
- Set of margins and its properties;
- 2-increasing functions with particular domain and range.

www.flll.jku.at/mediawiki

Thank you.

S.Saminger, On constructions and boundaries of some type of 2-increasing functions,