Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	

Bounds for Functions of Multivariate Risks

Paul Embrechts¹ Giovanni Puccetti²

¹Department of Mathematics ETH Zurich, CH-8092 Zurich, Switzerland

²Department of Mathematics for Decisions, University of Firenze, 50134 Firenze, Italy

Journal of Multivariate Analysys, 97(2006), 526-547

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction ●O	The multivariate framework	Duality 00 000	Applications 00000 000	
The problem at hand				

The problem at hand

On some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$, let

X_1,\ldots,X_n

be \mathbb{R}^k -valued random vectors having given distribution functions

 $F_1,\ldots,F_n:\mathbb{R}^k\to[0,1].$

Given a measurable function $\psi : (\mathbb{R}^k)^n \to \mathbb{R}^k$, the distribution of the vector

 $\psi(\boldsymbol{X}) = \psi(\boldsymbol{X}_1, \ldots, \boldsymbol{X}_n),$

is not completely determined by the F_i 's.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

Introduction ●O	The multivariate framework	Duality 00 000	Applications 00000 000	
The problem at hand				

The problem at hand

On some probability space $(\Omega, \mathfrak{A}, \mathbb{P})$, let

X_1,\ldots,X_n

be \mathbb{R}^k -valued random vectors having given distribution functions

$$F_1,\ldots,F_n:\mathbb{R}^k\to[0,1].$$

Given a measurable function $\psi : (\mathbb{R}^k)^n \to \mathbb{R}^k$, the distribution of the vector

$$\psi(X) = \psi(X_1,\ldots,X_n),$$

is not completely determined by the F_i 's.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

Introduction O•	The multivariate framework	Duality 00 000	Applications 00000 000	
The problem at hand				

We want to bound the distribution (tail) function of the vector $\psi(X)$ from below (above) on

 $\mathfrak{F}(F_1,\ldots,F_n),$

the set of dfs having F_1, \ldots, F_n as fixed marginals.

The problems at hand become

 $m_{\psi}(s) := \inf\{\mathbb{P}[\psi(X_1, \dots, X_n) < s] : X_i \sim F_i, 1 \le i \le n\}, s \in \mathbb{R}^k,$ $M_{\psi}(s) := \sup\{\mathbb{P}[\psi(X_1, \dots, X_n) \ge s] : X_i \sim F_i, 1 \le i \le n\}, s \in \mathbb{R}^k.$

ETHZ Zurich DMD Firenze

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework ●00	Duality 00 000	Applications 00000 000	
The multivariate frame	work			

The Fréchet class $\mathfrak{F}(F_1, \ldots, F_n)$

The set $\mathfrak{F}(F_1, \ldots, F_n)$ is non-empty.

When k = 1:

$$m_{\psi}(s) = 1 - M_{\psi}(s))$$

and it is easy to describe elements in $\mathfrak{F}(F_1, \ldots, F_n)$ (Sklar's theorem + concept of copula).

When k > 1:

Scarsini (1989) shows that the concept of *copula* as a tool to generate dfs from a set of marginals, becomes inadequate.

Introduction 00	The multivariate framework ●00	Duality 00 000	Applications 00000 000	
The multivariate framew	work			

The Fréchet class $\mathfrak{F}(F_1, \ldots, F_n)$

The set $\mathfrak{F}(F_1, \ldots, F_n)$ is non-empty.

When k = 1:

$$m_{\psi}(s) = 1 - M_{\psi}(s))$$

and it is easy to describe elements in $\mathfrak{F}(F_1, \ldots, F_n)$ (Sklar's theorem + concept of copula).

When *k* > 1:

Scarsini (1989) shows that the concept of *copula* as a tool to generate dfs from a set of marginals, becomes inadequate.

Introduction 00	The multivariate framework ●00	Duality 00 000	Applications 00000 000	
The multivariate frame	vork			

The Fréchet class $\mathfrak{F}(F_1, \ldots, F_n)$

The set $\mathfrak{F}(F_1, \ldots, F_n)$ is non-empty.

When k = 1:

$$m_{\psi}(s) = 1 - M_{\psi}(s))$$

and it is easy to describe elements in $\mathfrak{F}(F_1, \ldots, F_n)$ (Sklar's theorem + concept of copula).

When k > 1:

Scarsini (1989) shows that the concept of *copula* as a tool to generate dfs from a set of marginals, becomes inadequate.

Introduction 00	The multivariate framework ○●○	Duality 00 000	Applications 00000 000	
The multivariate frame	work			

Assumptions on $\psi : (\mathbb{R}^k)^n \to \mathbb{R}^k$

Given *k* measurable, **increasing** functions $\psi_j : \mathbb{R}^n \to \mathbb{R}, j \in K$, we construct the function $\psi : (\mathbb{R}^k)^n \to \mathbb{R}^k$ as follows:

$$\psi(\boldsymbol{X}) = \psi(\boldsymbol{X}_1, \dots, \boldsymbol{X}_n) = \psi\left(\left(\begin{array}{c} X_1^1 \\ \vdots \\ X_1^k \end{array} \right), \dots, \left(\begin{array}{c} X_n^1 \\ \vdots \\ X_n^k \end{array} \right) \right) = \left(\begin{array}{c} \psi_1(X_1^1, \dots, X_n^1) \\ \vdots \\ \psi_k(X_1^k, \dots, X_n^k) \end{array} \right).$$

If $X = (X_1, ..., X_n)$ is a matrix of risks, ψ can aggregate risks only row-wise, but the aggregation method may differ between rows.

This makes sense if the risks X_1, \ldots, X_n are componentwise homogeneous.

Introduction 00	The multivariate framework $00 \bullet$	Duality 00 000	Applications 00000 000	
The multivariate frame	work			

Why working with multivariate marginals

Assuming multivariate marginals allows not only to fix the univariate df of every component of the single multivariate policies, but also the dependence **within** the single policies.

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality ●○ ○○○	Applications 00000 000	
Duality theorems				

Duality theorems

 $m_{\psi}(s)$ and $M_{\psi}(s)$ are two **linear problems** over a convex feasible space of measures. Therefore, they admit a **dual representation**.

Main Duality Theorem (Ramachandran and Rüschendorf (1995))

$$m_{\psi}(s) = \sup \left\{ \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} f_{i} dF_{i} : f_{i} \in L^{1}(F_{i}), i \in N \text{ with} \right.$$
$$\left. \sum_{i=1}^{n} f_{i}(\boldsymbol{x}_{i}) \leq 1_{(-\infty,s)}(\psi(\boldsymbol{x})) \text{ for all } \boldsymbol{x} \in (\mathbb{R}^{k})^{n} \right\},$$

 $M_{\psi}(s)$ admits an analogous representation.

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality ●○ ○○○	Applications 00000 000	
Duality theorems				

Duality theorems

 $m_{\psi}(s)$ and $M_{\psi}(s)$ are two **linear problems** over a convex feasible space of measures. Therefore, they admit a **dual representation**.

Main Duality Theorem (Ramachandran and Rüschendorf (1995))

$$m_{\psi}(\boldsymbol{s}) = \sup \left\{ \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} f_{i} dF_{i} : f_{i} \in L^{1}(F_{i}), i \in N \text{ with} \right.$$
$$\left. \sum_{i=1}^{n} f_{i}(\boldsymbol{x}_{i}) \leq 1_{(-\infty,\boldsymbol{s})}(\psi(\boldsymbol{x})) \text{ for all } \boldsymbol{x} \in (\mathbb{R}^{k})^{n} \right\},$$

 $M_{\psi}(s)$ admits an analogous representation.

ETHZ Zurich DMD Firenze

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality ○● ○○○	Applications 00000 000	
Duality theorems				

- When n = 2 and k = 1; see Rüschendorf (1982).
- When n = 2 and k > 1, Li et al. (1996) give $m_+(s)$.
- When *n* > 2, the only explicit solution we know is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

Introduction 00	The multivariate framework	Duality ○● ○○○	Applications 00000 000	
Duality theorems				

- When n = 2 and k = 1; see Rüschendorf (1982).
- When n = 2 and k > 1, Li et al. (1996) give $m_+(s)$.
- When *n* > 2, the only explicit solution we know is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

Introduction 00	The multivariate framework	Duality ○● ○○○	Applications 00000 000	
Duality theorems				

- When n = 2 and k = 1; see Rüschendorf (1982).
- When n = 2 and k > 1, Li et al. (1996) give $m_+(s)$.
- When *n* > 2, the only explicit solution we know is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

Introduction 00	The multivariate framework	Duality ○● ○○○	Applications 00000 000	
Duality theorems				

- When n = 2 and k = 1; see Rüschendorf (1982).
- When n = 2 and k > 1, Li et al. (1996) give $m_+(s)$.
- When *n* > 2, the only explicit solution we know is given in Rüschendorf (1982) for the sum of risks uniformly distributed on the unit interval and in our paper for the sum of risks uniformly distributed on the unit hypercube.

Introduction 00	The multivariate framework	Duality ○○ ●○○	Applications 00000 000	
Standard/Dual bounds				

The basic idea in the dual approach

If $\hat{\mathbf{f}} = (\hat{f}_1, \dots, \hat{f}_n)$ and $\hat{\mathbf{g}} = (\hat{g}_1, \dots, \hat{g}_n)$ are two set of functions which are admissible for the corresponding dual problems, we have

$$\mathbb{P}[\psi(\boldsymbol{X}) < \boldsymbol{s}] \ge m_{\psi}(\boldsymbol{s}) \ge \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} \hat{f}_{i} dF_{i},$$
$$\mathbb{P}[\psi(\boldsymbol{X}) \ge \boldsymbol{s}] \le M_{\psi}(\boldsymbol{s}) \le \sum_{i=1}^{n} \int_{\mathbb{R}^{k}} \hat{g}_{i} dF_{i}.$$

Therefore, even if we do not solve the dual problems, dual admissible functions provide bounds on the solutions which are conservative from a risk management viewpoint.

ETHZ Zurich DMD Firenze

P. Embrechts and G. Puccetti

Introduction	The multivariate framework	Duality	Applications	
		õõo	000	
Standard/Dual bounds				

Standard bounds

We call *standard bounds* those bounds obtained by choosing *piecewise-constant* dual choices.

- Standard bounds are those typically obtained from elementary probability; see: Denuit, Genest, and Marceau (1999) for k = 1;
 Li, Scarsini, and Shaked (1996) for k > 1 and ψ = +.
- The standard bound on m_{ψ} is sharp only in the case of the sum of two risks. The one for M_{ψ} fails to be sharp also for n = 2.

Introduction	The multivariate framework	Duality	Applications	
		õõo	000	
Standard/Dual bounds				

Standard bounds

We call *standard bounds* those bounds obtained by choosing *piecewise-constant* dual choices.

- Standard bounds are those typically obtained from elementary probability; see: Denuit, Genest, and Marceau (1999) for k = 1; Li, Scarsini, and Shaked (1996) for k > 1 and $\psi = +$.
- The standard bound on m_{ψ} is sharp only in the case of the sum of two risks. The one for M_{ψ} fails to be sharp also for n = 2.

		Duality		
00	000	00	00000	
Standard/Dual bounds				

Standard bounds

We call *standard bounds* those bounds obtained by choosing *piecewise-constant* dual choices.

- Standard bounds are those typically obtained from elementary probability; see: Denuit, Genest, and Marceau (1999) for k = 1; Li, Scarsini, and Shaked (1996) for k > 1 and $\psi = +$.
- The standard bound on m_ψ is sharp only in the case of the sum of two risks. The one for M_ψ fails to be sharp also for n = 2.

Introduction 00	The multivariate framework	Duality ○○ ○○●	Applications 00000 000	
Standard/Dual bounds				

Dual bounds

We call *dual bounds* those bounds obtained by choosing *piecewise-linear* dual choices.

Dual bounds are better than standard bounds when n > 2 but actually we can calculate them only for the sum of non-negative risks.

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality 00 000	Applications ●0000 ○00	
k = 1: bounds on Value	-at-Risk			

k = 1: bounding the Value-at-Risk for an aggregate loss

The Value-at-Risk at probability level α for $\psi(X)$ is the maximum aggregate loss which can occur with probability $\alpha, \alpha \in [0, 1]$.

If G (the df of $\psi(X)$) is strictly increasing, VaR_{α}($\psi(X)$) is the unique threshold t at which $F(t) = \alpha$, i.e. $F^{-1}(\alpha)$.

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality 00 000	Applications ●0000 ○00	
k = 1: bounds on Value	-at-Risk			

k = 1: bounding the Value-at-Risk for an aggregate loss

The Value-at-Risk at probability level α for $\psi(X)$ is the maximum aggregate loss which can occur with probability $\alpha, \alpha \in [0, 1]$.

If *G* (the df of $\psi(X)$) is strictly increasing, VaR_{α}($\psi(X)$) is the unique threshold *t* at which *F*(*t*) = α , i.e. *F*⁻¹(α).

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	
k = 1: bounds on Value	e-at-Risk			

Searching for the worst-possible VaR for $\psi(X)$ over $\mathfrak{F}(F_1, \ldots, F_n)$ means looking for

$$m_{\psi}(s) := \inf\{\mathbb{P}[\psi(X) < s] : X_i \sim F_i, i = 1, \dots, n\}, s \in \mathbb{R}.$$

Indeed, according to the definition of VaR, we have

 $\operatorname{VaR}_{\alpha}(\psi(X)) \le m_{\psi}^{-1}(\alpha), \alpha \in [0, 1],$

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality 00 000	Applications	
7 1 1 1 871	- T21 1			

k = 1: bounds on Value-at-Risk

Figure: Range for $\mathbb{P}[X_1 + X_2 + X_3 < s]$ for a Pareto(1.5,1)-portfolio

P. Embrechts and G. Puccetti

Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality 00 000	Applications 000●0 000			
k = 1: bounds on Value-at-Risk						

Bounds on Value-at-Risk

	$VaR_{\alpha}($	$\operatorname{VaR}_{\alpha}(\sum_{i=1}^{10} X_i) \qquad \operatorname{VaR}_{\alpha}(\sum_{i=1}^{100} X_i)$		$\operatorname{VaR}_{\alpha}(\sum_{i=1}^{100} X_i)$		$\sum_{i=1}^{1000} X_i$)
α	dual	standard	dual	standard	dual	standard
0.90	0.669	1.485	11.039	149.850	150.162	14998.500
0.95	1.353	2.985	22.227	229.850	301.823	29998.500
0.99	2.985	14.985	111.731	1499.850	1515.111	149998.500
0.999	68.382	149.985	1118.652	14999.850	15164.604	1499998.500

Table: Upper bounds for $\operatorname{VaR}_{\alpha}(\sum_{i=1}^{n} X_i)$ of three Pareto portfolios of different dimensions. Data in thousands.

For more details on bounding VaR for k = 1, homogeneous portfolios of risks, see Embrechts and Puccetti (2006)

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality 00 000	Applications 000●0 000			
k = 1: bounds on Value-at-Risk						

Bounds on Value-at-Risk

	$VaR_{\alpha}($	$\operatorname{VaR}_{\alpha}(\sum_{i=1}^{10} X_i) \qquad \operatorname{VaR}_{\alpha}(\sum_{i=1}^{100} X_i)$		$\operatorname{VaR}_{\alpha}(\sum_{i=1}^{100} X_i)$		$\sum_{i=1}^{1000} X_i$)
α	dual	standard	dual	standard	dual	standard
0.90	0.669	1.485	11.039	149.850	150.162	14998.500
0.95	1.353	2.985	22.227	229.850	301.823	29998.500
0.99	2.985	14.985	111.731	1499.850	1515.111	149998.500
0.999	68.382	149.985	1118.652	14999.850	15164.604	1499998.500

Table: Upper bounds for $\operatorname{VaR}_{\alpha}(\sum_{i=1}^{n} X_i)$ of three Pareto portfolios of different dimensions. Data in thousands.

For more details on bounding VaR for k = 1, homogeneous portfolios of risks, see Embrechts and Puccetti (2006)

Introduction 00	The multivariate framework	Duality 00 000	Applications	
k = 1: bounds on Value	-at-Risk			

We can obtain the above table also for Moscadelli (2004)'s OR-portfolio.

α	comonotonic value	dual bound	standard bound
0.99	2.8924×10^{4}	1.4778×10^5	2.6950×10^{5}
0.995	6.7034×10^{4}	3.3922×10^{5}	6.1114×10^{5}
0.999	4.8347×10^{5}	2.3807×10^{6}	4.1685×10^{6}
0.9999	8.7476×10^{6}	4.0740×10^{7}	6.7936×10^{7}

Table: Range for VaR_{α} $\left(\sum_{i=1}^{8} X_i\right)$ for the data underlying Moscadelli (2004).

For more details on bounding VaR for k = 1, non-homogeneous portfolios of risks, see Embrechts and Puccetti (2006b)

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality 00 000	Applications	
k = 1: bounds on Value	-at-Risk			

We can obtain the above table also for Moscadelli (2004)'s OR-portfolio.

α	comonotonic value	dual bound	standard bound
0.99	2.8924×10^{4}	1.4778×10^5	2.6950×10^{5}
0.995	6.7034×10^{4}	3.3922×10^{5}	6.1114×10^{5}
0.999	4.8347×10^{5}	2.3807×10^{6}	4.1685×10^{6}
0.9999	8.7476×10^{6}	4.0740×10^{7}	6.7936×10^{7}

Table: Range for VaR_{α} $\left(\sum_{i=1}^{8} X_i\right)$ for the data underlying Moscadelli (2004).

For more details on bounding VaR for k = 1, non-homogeneous portfolios of risks, see Embrechts and Puccetti (2006b)

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti

Introduction 00	The multivariate framework	Duality 00 000	Applications ○○○○○ ●○○	
k > 1: Multivariate Val	ue-at-Risk			

k > 1: Multivariate VaR

When k > 1, the definition of VaR does not make sense: there are possibly infinitely vectors $s \in \mathbb{R}^k$ at which $G(s) = \alpha$.

The LO-VaRs for $\psi(X)$ are the α -level sets of its df G. The UO-VaRs are the $(1 - \alpha)$ -level sets of its tail \overline{G}

Introduction 00	The multivariate framework	Duality 00 000	Applications	
k > 1: Multivariate Val	ue-at-Risk			

The LO-VaR $_{\alpha}$ for m_{ψ} (left) and the UO-VaR $_{\alpha}$ for M_{ψ} (right) provide conservative estimates of the α -VaRs for the aggregate loss $\psi(X)$ over $\mathfrak{F}(F_1, \ldots, F_n)$.

P. Embrechts and G. Puccetti

ETHZ Zurich, DMD Firenze

Introduction 00	The multivariate framework	Duality 00 000	Applications ○○○○○ ○○●	
k > 1: Multivariate Val	ue-at-Risk			

Worst-possible LO-VaRs for the sum of two bivariate Pareto ($\theta = 1.2$ for the dotted line) (left) and Log-Normal (right) distributed risks.

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	Summary • •	
Summary					

Bounding the df and the tail for an increasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation of the problem we can improve the standard bounds obtained from elementary probability

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	Summary • •	
Summary					

Bounding the df and the tail for an increasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation of the problem we can improve the standard bounds obtained from elementary probability

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	Summary • •	
Summary					

Bounding the df and the tail for an increasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation of the problem we can improve the standard bounds obtained from elementary probability

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	Summary • •	
Summary					

Bounding the df and the tail for an increasing function of dependent random vectors having fixed marginals

general optimal solution is difficult to find when n > 2

using the dual formulation of the problem we can improve the standard bounds obtained from elementary probability

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	Summary ○ ●	
Acknowledgements					

Acknowledgements

The second author would like to thank

RiskLab, ETH Zurich

for financial support.

ETHZ Zurich, DMD Firenze

P. Embrechts and G. Puccetti Bounds for Functions of Multivariate Risks

Introduction 00	The multivariate framework	Duality 00 000	Applications 00000 000	References
Acknowledgements				

References

- Denuit, M., C. Genest, and É. Marceau (1999). Stochastic bounds on sums of dependent risks. *Insurance Math. Econom.* 25(1), 85–104.
- Embrechts, P. and G. Puccetti (2006). Bounds for functions of dependent risks. *Finance Stoch.* 10(3), 341–352.
- Embrechts, P. and G. Puccetti (2006b). Aggregating risk capital, with an application to operational risk. *Geneva Risk. Insur. Rev.* 31(2), 71–90.
- Li, H., M. Scarsini, and M. Shaked (1996). Bounds for the distribution of a multivariate sum. In Distributions with Fixed Marginals and Related Topics, Volume 28, pp. 198–212. Hayward, CA: Inst. Math. Statist.
- Moscadelli, M. (2004). The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Preprint, Banca d'Italia.
- Ramachandran, D. and L. Rüschendorf (1995). A general duality theorem for marginal problems. *Probab. Theory Related Fields* 101(3), 311–319.
- Rüschendorf, L. (1982). Random variables with maximum sums. *Adv. in Appl. Probab.* 14(3), 623–632.
- Scarsini, M. (1989). Copulae of probability measures on product spaces. J. Multivariate Anal. 31(2), 201–219.