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Formulation of the problem

Let Y be a random variable with unknown dis-

tribution function G and let Gn be the empir-

ical distribution function of Y found from the

sample y1, y2, ..., yn. Our aim is to present the

unknown distribution function G by means of

a known distribution function F. Let F be the

distribution function of random variable X. It

is assumed that function F is k times continu-

ously differentiable. Then we can approximate

the function G by means of the function F as

G(x) ≈
k∑

l=0

al
dlF (x)

dxl
(1)

where al, l = 1,2, . . . k, are some coefficients.

The problem is how to determine the coeffi-

cients al, l = 1,2, . . . , k in equality (1).



Solution in univariate case

1937-Cornish and Fisher. Assume that ran-

dom variables X and Y have moments and cu-

mulants up to sufficiently high order k. Firstly

the characteristic function of Y is presented

through the characteristic function function of

X as a Taylor series. Then the inverse Fourier

transform is used to get from the Taylor expan-

sion an approximation of the probability den-

sity function of Y through the density function

of X. Integrating this approximation we get

an approximation of the unknown distribution

function in the form (1) where the coefficients

al, l = 1,2, . . . , k are functions of the first k cu-

mulants of random variables X and Y.



First way for approximation of multivariate

distribution functions

Preparation

1) Vectorization

The vectorization operation is denoted by vec.

For X : p×q matrix vecX : pq×1 is the following
pq-vector:

vecX = (x11, . . . , xp1, x12, . . . , xp2,

. . . x1q, . . . , xpq)
′.

2) Kronecker product

This operation is denoted by ⊗. Let us have
the matrices X : p × q and Y : r × s. Then the
Kronecker product X⊗Y is the pr × qs-matrix
which is partitioned into r × s blocks:

X⊗Y = [xljY], l = 1, ..., p; j = 1, ..., q



where

xljY =




xljy11 · · · xljy1s
... . . . ...

xljyr1 · · · xljyrs


 .

3) Matrix derivative

Neudecker (1969)The derivative of the matrix

Y : r × s by the matrix X : p × q is the matrix
dY

dX
: rs× pq expressed as

dY

dX
=

d

dvec′X
⊗ vecY

where

d

dvec′X
= (

∂

∂x11
, . . . ,

∂

∂xp1
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq
).



MacRae (1974) Derivative of the matrix Y :

r× s by the matrix X : p× q is a pr× qs-matrix
∂Y

∂X
: defined by equality

∂Y

∂X
=

d

dX
⊗Y

where

d

dX
=




∂
∂x11

· · · ∂
∂x1q

... . . . ...
∂

∂xp1
· · · ∂

∂xpq


 .

Relation between two multivariate density

functions.

Kollo and von Rosen (1995, 1998)

By means of matrix derivative we can define

the characteristic function and the k-th order

cumulants of random vector. Let X be a ran-

dom p-vector and t ∈ <p. Then the k-th order



cumulant of X

ck(X) =
1

ik
dk ln(ϕX(t))

dtk
|t=0p

.

It follows straightforwardly that c1(X) = E(X′)
and c2(X) = D(X).

Let X and Y be random p-vectors with proba-

bility density functions fX(x) and fY(y) respec-

tively. Assume that fX(x) is uniformly contin-

uous and continuously differentiable necessary

number of times by argument x. Let us denote

the k-th order derivative of the function fX(x)

by f
(k)
X (x). Then in notations explained above

the next equality holds (Kollo and von Rosen,

1995):



fY(x) = fX(x)− (E(Y)− E(X))′vecf
(1)
X (x)

+
1

2
vec′{D(Y)−D(X) + (E(Y)− E(X))

(E(Y)− E(X))′}vecf
(2)
X (x)

−1

6
vec′{(c3(Y)− c3(X))+3vec′(D(Y)−D(X))

⊗(E(Y)− E(X))

+(E(Y)− E(X))′⊗3}vecf
(3)
X + .... (2)

Our aim is to integrate the expression (2). For

this integration matrix integral is introduced

and studied.



Matrix integral

Matrix integral is defined as inverse operation

of matrix derivative.

Definition 1 Let Z : rs × pq be a function of

X : p × q. A matrix Y(X) : r × s is called the

matrix integral of Z = Z(X) : rs × pq where

X : p× q, if

∂Y(X)

∂X
= Z.

The fact that matrix Y is the matrix integral

of matrix Z is denoted as
∫

<pq
Z ◦ dX = Y. (3)

If Y is a matrix integral of matrix Z, then also

Y + C is a matrix integral of Z, where C is a

constant matrix with the same dimensions as

matrix Y. Definition 1 is used also to define

the definite matrix integral.



Definition 2 A difference
∫ B
A Z ◦ dX = Y(B)−

Y(A) is called the definite matrix integral of

matrix Z from A to B.

When the matrix derivative increases the di-

mensions of the differentiated matrix, then the

matrix integral decreases the dimensions of the

integrated matrix.

For decreasing the dimensions of matrices MacRae

(1974) has introduced the star product of ma-

trices. She has denoted this operation as *.

Definition 3 Let us have matrix A : p× q and

partitioned-matrix B : pr×qs, consisting of r×s

blocks. Then the star product A ∗ B : r × s is

defined as

A ∗B =
p∑

l=1

q∑

j=1

alj[B]lj

where the blocks [B]lj are r × s-matrices.



The next statement gives us the relation be-

tween star product and matrix integral.

Theorem 1 Let Z =
∂Y

∂X
. Then

∫

<pq
Z ◦ dX =

∫

<pq
dX ∗ Z.

Example

Let us have functions g(x) = x2
1+x2

2 and G(x) =
1

3
(x3

1x2 + x3
2x1). In the next example we take

C = 02.

We get

g(2)(x) =

(
2 0

0 2

)
.

and

g(1)(x) = (2x1 2x2 ) .



Applying the star product we get
∫

<p
g(2)(x) ◦ dx =

∫

<p
dx ∗ g(2)(x)

=

(
2x1

2x2

)
= (g(1)(x))′.

Pihlak, M. (2004) Matrix integral. Linear Al-

gebra and Its Applications 388, 315-325

Relation between two multivariate distri-

bution functions

We have to integrate the expression (2). Let

us write the equality (2) in the form

fY(x) = fX(x)−a′vecf
(1)
X (x)+vec′Bvecf

(2)
X (x)

−vec′Cvecf
(3)
X (x) + . . . (4)

where

a = (E(X)− E(Y)), (5)



B =
1

2
[D(Y)−D(X)+(E(Y)−E(X))(E(Y)−E(X))′]

(6)
and

C =
1

6
[(c3(Y)− c3(X)) + 3(D(Y)−D(X))

⊗(E(Y)− E(X))

+(E(Y)− E(X))⊗2(E(Y)− E(X))′]. (7)

Applying properties of matrix integral we get
from equality (4) the expansion of the distri-
bution function FY(x) formulated in

Approximation of multivariate distribution func-
tions. (English) Dissertationes Mathematicae
Universitatis Tartuensis 50. Tartu: Tartu Uni-
versity Press; Tartu: Univ. Tartu, Faculty of
Mathematics and Computer Science

In bivariate case we get between known distri-
bution function F (x) and unknown distribution
function FY(x) the following expression:



FY(x) = F (x)−a1f(x)+(a1−a2)f2(x2)F (x1|x2)

+2b12f(x) + b11
∂f1(x1)F (x2|x1)

∂x1

+b22
∂f2(x2)F (x1|x2)

∂x2

−(c((1,1)(1,2) + c(2,1)(1,1) + c(1,2)(1,1))
∂f(x)

∂x1

−(c(2,2)(1,1) + c(2,1)(1,2) + c(1,2)(1,2))
∂f(x)

∂x2

−(c(1,1)(1,1)
∂2f1(x1)F (x2|x1)

∂2x1

+c(2,2)(1,2)
∂2f2(x2)F (x1|x2)

∂2x2
) + . . . .



Edgeworth type expansion for distribution

functions

Let us introduce Hermite matrix-polynomials

for a p-vector x.

Definition 4 Let x be a p-vector. Then the

matrix Hk(x,Σ) is called Hermite matrix-polynomial

if it is defined by the equality

dkfX(x)

dxk
= (−1)kHk(x,Σ)fX(x), k = 1,2, . . .

where fX(x) is the density function of the nor-

mal distribution Np(0,Σ).

As follows from Definition 4, the Hermite matrix-

polynomials are obtained by matrix differenti-

ation.

The Hermite matrix polynomials up to the third

order are given by equalities (Kollo, 1991 p.

141):



H0(x,Σ) = 1;

H1(x,Σ) = x′Σ−1;

H2(x,Σ) = Σ−1xx′Σ−1 −Σ−1;

H3(x,Σ) = (Σ−1x)⊗2x′Σ−1

−vecΣ−1(x′Σ−1)−(Σ−1⊗Σ−1x)−(Σ−1x⊗Σ−1).

In the univariate case when X ∼ N(0, σ2) the
Hermite polynomials hi(x), i = 0,1,2 take the
following form:

h0(x) = 1,

h1(x) = xσ−2

and

h2(x) = x2σ−4 − σ−2.

For approximation of the unknown distribution
function with distribution function of normal
distribution the next statement is valid.



Theorem 2 Let X ∼ N2(0,Σ) and let FX(x)

be the distribution function of X and FY(x) be

the unknown distribution function of bivariate

random vector Y. Then

FY(x) = FX(x)+{a2+2b12+(C12, H1(x,Σ))}fX(x)

+{(a1 − a2)f2(x2)}Φ(g(x2))

−b11{h1(x1)− g′(x1))f1(x1)}Φ(g(x1))

−b22{h1(x2)− g′(x2))f2(x2)}Φ(g(x2))

−c(1,1)(1,1){h2(x1)f1(x1)Φ(g(x1))

−2h1(x1)f1(x1)f1(g(x1))g
′(x1)

−f1(x1))h1(g(x1))f1(g(x1))g
′(x1)

2}

−c(2,2)(1,2){h2(x2)f2(x2)Φ(g(x2))

−2h1(x2)f2(x2)f1(g(x2))g
′(x2)

−f2(x2)h1(g(x2))f2(g(x2))g
′(x2)

2}+ . . . (8)



where

C12 =

(
c(1,1)(1,2) + c(1,2)(1,1) + c(2,1)(1,1)

c(2,2)(1,1) + c(2,1)(1,2) + c(1,2)(1,2)

)
,

a, B and C are defined by equalities (5), (6)

and (7) and

g(x1) =

x2√
σ22

− x1√
σ11

ρ
√

1− ρ2
(9)

and

g(x2) =

x1√
σ11

− x2√
σ22

ρ
√

1− ρ2
. (10)

.

Relation between functions g(x1), g(x2) and

function Φ (distribution function of standard

normal distribution):

F (x2|x1) = Φ(g(x1))

and

F (x1|x2) = Φ(g(x2)).



Second way way for approximation of mul-

tivariate distribution functions. Copulas

Adermann, V., Pihlak, M. (2005) Using copu-

las for modeling the dependence between tree

height and diameter at breast height. Acta

et Commentationes Universitatis Tartuensis de

Mathematica, 9, 77-85.

Let us denote I = [0,1]. Let I2 be a unit

square. Then copula is defined as follows:

Definition 5 The function C : I2 → I is called

copula if

1) for every u, v ∈ I,

C(u,0) = 0 = C(0, v)



and

C(u,1) = u, C(1, v) = v;

2) for every u1, u2, v1 and v2 ∈ I such that
u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) ≥ 0.

The key result of the copula theory is formu-
lated in the following theorem.

Theorem 3 Let H be a joint bivariate distri-
bution function with marginal distribution func-
tions F and G. Then there exists a copula C
such that for all x, y ∈ R

H(x, y) = C(F (x), G(y)).

Theorem 3 is called the Sklar’s theorem (Nelsen,
1999).

A. Sklar is initiator of the copula theory. He
laid down foundations of the theory.



Archimedean copula

One very important wide class of copulas is

known as Archimedean copulas. This class

consists of families of one-parameter distribu-

tions. Let θ ∈ < and ϕθ = ϕθ(z). Assume that

ϕθ(z) is a convex, decreasing function from

(0,1] to [0,∞) such that ϕθ(1) = 0.

Definition 6 The function

C(u, v) = ϕ−1
θ (ϕθ(u) + ϕθ(v)), u, v ∈ (0,1]

is said to be an Archimedean copula.

Between Kendall’s correlation coefficient τ and

generating function ϕθ the next relation is valid

(Nelson, 1999):

τ = 1 + 4
∫ 1

0

ϕθ(t)

ϕ′θ(t)
dt.



Archimedean copulas can be divide by type of
ϕθ(z) into families.

Clayton family

ϕθ(t) =
t−θ − 1

θ

θ =
2τ

1− τ

Gumbel family

ϕθ(t) = (−lnt)θ

θ =
1

1− τ



Two-dimensional Gaussian copula

For random variable Z with the distribution

function FZ, the function F−1
Z (x) is called the

quantile function of Z if the inverse function

exists. Let us denote the quantile function as

U.

Let (X, Y )′ denote a vector of continuous vari-

ables with arbitrary specified continuous marginal

distributions: the density function f and the

distribution function F of X and the density

function g and the distribution function G of

Y. Let U be the normal quantile function. Then

we define variables V and W having the stan-

dard normal distribution as

V = U(F (X))

and

W = U(G(Y )).



Let γ be the Pearson linear correlation coeffi-

cient between V and W. Then the density func-

tion h of (X, Y ) can be expressed as

h(x, y) = φ(U(F (X)), U(G(Y )))f(x)g(y)

where

φ(v, w) =
1√

1− γ2
exp(

−γ(γv2 − 2vw + γw2)

2(1− γ2)
)

is the density weighting function (Krzysztofow-

icz and Kelly, 1994). The function h is called

the density function of the Gaussian copula.



Application of both methods

Let us approximate the joint distribution of

tree height H and diameter at the breast height

(DBH) by different models.

The functional dependence between DBH and

height has been intensively studied in the lit-

erature. The most widely used 2-parameter

family of functions is elaborated by M. Näslund

(Näslund, 1941). Following Näslund, the de-

pendence between variables H and DBH can

be expressed by the following equality
√

1

H − 1.3
=

b0
DBH

+ b1,

where b0 and b1 are the parameters.

Let us denote DBH by X and H by Y.



The data is formed by tree measurement of

Estonian National Forest Inventory from the

period of 1999-2003. Widespread Estonian

tree species: pine (Pinus sylvestris) and spruce

(Picea abies) were analysed in the course of

data processing.

Approximating using Edgeworth expansion

We approximate the distribution of random vec-

tor X = (X, Y )′ with distribution function of

Y ∼ N2(0,S) where S is the sample covariance

matrix of X.

Applying equality (8) we get for distribution

function of X the following approximation:



FX(x) = FY(x) +
1

6
[(C1, H1(x,S))fY(x)

−(c3(X))11{h2(x1))f1(x1)Φ(g(x1))

−2h1(x1)f1(x1)f1(g(x1))g
′(x1)

−g(x1)f1(g(x1))f1(x1)g
′(x1)

2}

−(c3(X))42{h2(x2)f2(x2)Φ(g(x2))

−2h1(x2)f2(x2)f2(g(x2)g
′(x2))

−g(x2)f2(g(x2))f2(x2)g
′(x2)

2}] + . . . (11)

where

C1 =

(
(c3(X))12 + (c3(X))21 + (c3(X))31

(c3(X))22 + (c3(X))32 + (c3(X))41

)

and f1(x1) and f2(x2) are marginal density func-

tions of Y1 and Y2, respectively.



The goodness of approximation is estimated

by the measure

d =

∑k
i=1(Fk(xi)− FX(xi))

2

k

where k denotes the sample size.

Table 1. Goodness of distribution function ap-

proximation on different tree species and den-

sity classes.

Species Density Distribution Value of d× 106

spruce low Normal 1190
Theoretic 514

spruce high Normal 1370
Theoretic 217

pine low Normal 496
Theoretic 183

pine high Normal 152
Theoretic 95.1



Approximating using copulas

Goodness of fit test for Archimedean cop-

ula

Let us have a random sample of observations,

(X1, Y1), ..., (Xn, Yn). Define the random vari-

ables Zi,

Zi =
#{(Xj, Yj) : Xj < Xi&Yj < Yi}

n− 1
, i = 1, ..., n.

From a sample (xi, yi), i = 1, ..., n we get z1, ..., zn

as values of the i.i.d. random variables Z1, ..., Zn.

Then we construct

Kn(z) =
#{zi : zi < z}

n
.

Finally we define the theoretical distribution

function of the Archimedean copula C(F (X), G(Y )) :

K(z) = z − ϕθ(z)

ϕ′θ(z)



(Frees and Valdez, 1998). The concordance of

the copula C(u, v) with empirical distribution

function of (X, Y ) can be estimated by means

of Kolmogorov-Smirnov statistic

D = max
z
|Kn(z)−K(z)|,

where n is the sample size.

Results of approximation with copula

The results of approximation with Gaussian

copulas are presented in Figures 1-2. The pa-

rameter γ is the Pearson’s correlation coeffi-

cient. In these figures the asymmetry of the

joint distribution is caused by the log-normality

of DBH.



Figure 1 (Pih-
lak and Adermann, 2005) Joint distribution of
H(in m) and DBH(in cm) by Gaussian copula
for spruce in high density class, γ = 0.889

Figure 2 (Pih-
lak and Adermann, 2005) Joint distribution of
H(in m) and DBH(in cm) for pine by Gaussian
copula in high density class, γ = 0.838



The results of modeling with Clayton and Gum-

bel copulas are presented in the following table.

Table 2. (Adermann and Pihlak, 2005). The

results of modeling with Archimedean copulas

Species Density class Model θ D
spruce low Clayton 4.43 0.0368
spruce high Clayton 4.60 0.0636
spruce low Gumbel 3.22 0.0582
spruce high Gumbel 3.30 0.0531
pine low Clayton 2.66 0.0287
pine high Clayton 3.44 0.0329
pine low Gumbel 2.33 0.0694
pine high Gumbel 2.72 0.0671



Multivariate Kolmogorov-Smirnov test

Multivariate Kolmogorov-Smirnov test is the
generalization of univariate Kolmogorov-Smirnov
test (Justel, Peña and Zamar, 1997).

Bivariate Kolmogorov-Smirnov test

Let us define random variables Z1
1 = F (X),

Z1
2 = F (Y |X) and Z2

1 = F (Y ), Z2
2 = F (X|Y ).

From these random variables we form random
vectors Z1 = (Z1

1 , Z1
2) and Z2 = (Z2

1 , Z2
2). We

construct the values of test statistics

d1
n = max

1≤i≤n
|Gemp(z

1
i )− z1

1iz
1
2i|

and

d2
n = max

1≤i≤n
|Gemp(z

2
i )− z2

1iz
2
2i|

where z1
i = (z1

1i, z
1
2i), z2

i = (z2
1i, z

2
2i), z1

1i, z
1
2i, z

2
1i

and z2
2i are the ith realizations of random vari-

ables Z1
1 , Z1

2 , Z2
1 and Z2

2 , respectively, i = 1, . . . , n.



The function Gemp is the empirical distribution

function of Z1 or Z2. We get the value of the

bivariate statistic for goodness-of-fit test

Dn = max{d1
n, d2

n}. (12)

Applying bivariate Kolmogorov-Smirnov test

The results of goodness-of-fit test are presented

in Table 3.

Table 3. The results of the Kolmogorov-Smirnov

test for Edgeworth type expansion and for Gaus-

sian copula

Species Density Dnedg Dncop

spruce low 0.0859 0.1279
spruce high 0.0839 0.1164
pine low 0.1302 0.1555
pine high 0.1276 0.1726



Advantages and disadvantages

Adv. Disadv.
Edgeworth General theory Complexity
Gaussian Simplicity uncertainty



Some ideas for further development

• To generalize Theorem (8) to higher-dimensional

cases, firstly to the three-dimensional case.

• The theory of the choice of generating func-

tion φθ(t) for Archimedean copulas needs de-

velopment and generalization to the multivari-

ate case.

• In the future I plan apply our technique in

approximation of distribution functions for dif-

ferent problems in life sciences.



Thank You for Attention!


