On the quality of k-means clustering based on grouped data

Meelis Käärik, Kalev Pärna

University of Tartu
OUTLINE

1. Introduction
2. Lloyd’s algorithm
3. Formulation of the problem
4. Main question
5. Results
P – probability distribution on \mathbb{R}

X – random variable, $X \sim P$

DEF 1.1. We measure the quality of approximation of the distribution P by a set $A = \{a_1, \ldots, a_k\}$ by the following loss-function:

$$W(A, P) = \int_1^{\inf_{1 \leq i \leq k}} (x - a_i)^2 P(dx).$$
P – probability distribution on \mathbb{R}

X – random variable, $X \sim P$

DEF 1.1. We measure the quality of approximation of the distribution P by a set $A = \{a_1, \ldots, a_k\}$ by the following loss-function:

$$W(A, P) = \int \inf_{1 \leq i \leq k} (x - a_i)^2 P(dx).$$

DEF 1.2. The loss-function for X can be written as

$$W(A, X) = E \inf_{1 \leq i \leq k} (X - a_i)^2.$$
On the quality of k-means clustering based on grouped data – M. Käärik, K. Pärna

1. Introduction

P – probability distribution on \mathbb{R}

X – random variable, $X \sim P$

DEF 1.1. We measure the quality of approximation of the distribution P by a set $A = \{a_1, \ldots, a_k\}$ by the following loss-function:

$$W(A, P) = \int \inf_{1 \leq i \leq k} (x - a_i)^2 P(dx).$$

DEF 1.2. The loss-function for X can be written as

$$W(A, X) = E \inf_{1 \leq i \leq k} (X - a_i)^2.$$

DEF 1.3. Any A^* satisfying $W(A^* P) = \inf_{A \subset \mathbb{R}, |A| = k} W(A, P)$ is called k-mean of P (or X).
DEF 1.4. Let \(S = \{S_1, \ldots, S_k\} \) be a partition of the support of \(P \). \(S \) is Voronoi partition for \(A \), if

\[
S_i = \{x : |x - a_i| < |x - a_j|\} \cup \{x : |x - a_i| = |x - a_j|, i < j\}.
\]
DEF 1.4. Let \(S = \{S_1, \ldots, S_k\} \) be a partition of the support of \(P \). \(S \) is Voronoi partition for \(A \), if

\[
S_i = \{x : |x - a_i| < |x - a_j|\} \cup \{x : |x - a_i| = |x - a_j|, i < j\}.
\]

Example 1.1. Expectation \(EX \) is 1-mean of \(X \). Calculate

\[
W(a, X) = E(X - a)^2
= E((X - EX) + (EX - a))^2
= E(X - EX)^2 + 2E((X - EX)(EX - a)) + E(EX - a)^2
= Var X + (EX - a)^2.
\]
2. Lloyd’s algorithm

1. Choose initial points \(C^0 = \{a^0_1, \ldots, a^0_k\} \)

2. Given points \(C^m \), find the Voronoi partition \(S^m \)

3. Calculate the centres of clusters of partition \(S^m \), obtain points \(C^{m+1} \)

4. Calculate the loss \(W(C^{m+1}, P) \)
 Go to step 2 unless \(W(C^m, P) - W(C^{m+1}, P) \) is small enough
3. Formulation of the problem
3. Formulation of the problem

Problem: high computational cost
3. Formulation of the problem

Problem: high computational cost

Idea: calculate the k-means for grouped data
3. Formulation of the problem

Problem: high computational cost

Idea: calculate the k-means for grouped data

Question: how much information do we lose?
Graph 1. Original distribution P
3. Formulation of the problem

Graph 2. Voronoi Partition S based on optimal k-mean for $P(A^*)$
Graph 3. Grouping the original data (partition T)
Graph 4. “Problematic” regions

- \(T^*_1 \)
- \(T^*_2 \)
- \(T^*_{k-1} \)
Graph 5. “Closest” partition to S that follows T: S^B
4. Main question

\(P \) – original distribution

\(P^n \) – grouped data (based on partition \(T^n = \{T^n_1, \ldots, T^n_n\}\))

\(A^* \) – \(k \)-means for \(P \)

\(A^{n*} \) – \(k \)-means for \(P^n \)

\(S = \{S_1, \ldots, S_k\} \) – Voronoi partition corresponding to \(A^* \)

\(\{T^*_1, \ldots, T^*_{k-1}\} \subset T^n \) – “problematic” regions:

\[T^*_i \cap S_i \neq \emptyset, \ T^*_i \cap S_{i+1} \neq \emptyset, \ i = 1, \ldots, k - 1 \]

\(\{x^*_1, \ldots, x^*_{k-1}\} \) – cluster means of \(\{T^*_1, \ldots, T^*_{k-1}\} \)
4. Main question

P – original distribution
P^n – grouped data (based on partition $T^n = \{T^n_1, \ldots, T^n_n\}$)
A^* – k-means for P
A^{n*} – k-means for P^n
$S = \{S_1, \ldots, S_k\}$ – Voronoi partition corresponding to A^*
$\{T^*_1, \ldots, T^*_{k-1}\} \subset T^n$ – “problematic” regions:

\[T^*_i \cap S_i \neq \emptyset, \ T^*_i \cap S_{i+1} \neq \emptyset, \ i = 1, \ldots, k - 1 \]

$\{x^*_1, \ldots, x^*_{k-1}\}$ – cluster means of $\{T^*_1, \ldots, T^*_{k-1}\}$

How to estimate $W(A^{n*}, P) - W(A^*, P)$?
Some additional notations:

\(S^B = \{S_1^B, \ldots, S_k^B\} \) – partition defined by

\[
S_i^B = \begin{cases}
 S_i \cup T_{i-1}^* \cup T_i^*, & \text{if } x_{i-1}^* \in S_i, x_i^* \in S_i \\
 S_i \cup T_{i-1}^* \setminus T_i^*, & \text{if } x_{i-1}^* \in S_i, x_i^* \notin S_i \\
 S_i \setminus T_{i-1}^* \setminus T_i^*, & \text{if } x_{i-1}^* \notin S_i, x_i^* \in S_i \\
 S_i \setminus T_{i-1}^* \setminus T_i^*, & \text{if } x_{i-1}^* \notin S_i, x_i^* \notin S_i.
\end{cases}
\]

\(B = \{b_1, \ldots, b_k\} \) – means of clusters \(\{S_1^B, \ldots, S_k^B\} \)

DEF 4.1. For each \(A = \{a_1, \ldots, a_k\} \) and partition \(S = \{S_1, \ldots, S_k\} \) denote

\[
W(A, P|S) := \sum_{i=1}^k \int_{S_i} \|x - a_i\|^2 dP.
\]
5. Results

Idea:

\[
0 \leq W(A^{n*}, P) - W(A^*, P) = W(A^{n*}, P) - W(A^{n*}, P^n) \\
+ W(A^{n*}, P^n) - W(B, P^n|S^B) \\
+ W(B, P^n|S^B) - W(B, P|S^B) \\
+ W(B, P|S^B) - W(A^*, P)
\]
5. Results

Idea:

\[0 \leq W(A^{n*}, P) - W(A^*, P) = W(A^{n*}, P) - W(A^{n*}, P^n) + W(A^{n*}, P^n) - W(B, P^n | S^B) + W(B, P^n | S^B) - W(B, P | S^B) + W(B, P | S^B) - W(A^*, P) \]

General result:

\[W(A^{n*}, P) - W(A^*, P) \leq 2 \sum_{i=1}^{k-1} (a_{i+1} - a_i) \Delta T_i^* \cdot P(T_i^*). \]
Example 5.1. Take $P(T^n_i) = \frac{1}{n}$, then

$$W(A^{n*}, P) - W(A^*, P) \leq \frac{2}{n} (a_k - a_1) \max_{1 \leq i < k} \Delta T^*_i.$$
Example 5.1. Take $P(T^n_i) = \frac{1}{n}$, then

$$W(A^{n*}, P) - W(A^*, P) \leq \frac{2}{n} (a_k - a_1) \max_{1 \leq i < k} \Delta T^*_i.$$

Example 5.2. Take $\Delta(T^n_i) \leq \Delta$, then

$$W(A^{n*}, P) - W(A^*, P) \leq 2\Delta (a_k - a_1) \max_{1 \leq i < k} P(T^*_i).$$
Example 5.1. Take \(P(T_i^n) = \frac{1}{n} \), then

\[
W(A^{n*}, P) - W(A^*, P) \leq \frac{2}{n} (a_k - a_1) \max_{1 \leq i < k} \Delta T_i^*.
\]

Example 5.2. Take \(\Delta(T_i^n) \leq \Delta \), then

\[
W(A^{n*}, P) - W(A^*, P) \leq 2\Delta (a_k - a_1) \max_{1 \leq i < k} P(T_i^*).
\]

Example 5.3. Take \(P(T_i^n) \leq p \) ja \(\Delta(T_i^n) \leq \Delta \), then

\[
W(A^{n*}, P) - W(A^*, P) \leq 2p\Delta (a_k - a_1).
\]
THANK YOU!