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A

Nonparametric regression model

Observe Y1,..., Y, from
the model

Yi=u(t)+e¢;, ti=(—-1/2)/n, i=1,...,n,
£1,...&pn are i.i.d. N(O, 1),

where the unknown function u is defined on [0, 1].
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Hypothesis

We wish to test the no-effect hypothesis
Ho: u(t)=pBo forallte[0,1],
where Bo € R is an unknown constant.
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Hypothesis

We wish to test the no-effect hypothesis
Ho: u(t)=pBo forallte[0,1],
where Bo € R is an unknown constant.

The test will rely on an orthogonal series
representation for u:

u(t) =Bo+ Y Bx(t), xel0,1], (1)
j=1
wherge
Bi=[x(Hu(t)dt, j=0,1,...
0
and

{1, x1,X2,...} is an orthonormal basis for y € L,[0, 1].
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A

Example: An example of such a basis is

xj(t) = V2cos(mjt), j=1,2,....

Wavelets and orthogonal polynomials are other
examples.

The basis functions are also assumed to be orthonormal
with respect to the design:

D xjtxe(t) = { 2 ji,ﬁ
i=1 ’

forallj,ke{0,1,...} and xo = 1.
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Example: An example of such a basis is

xj(t) = V2cos(mjt), j=1,2,....

Wavelets and orthogonal polynomials are other
examples.

The basis functions are also assumed to be orthonormal
with respect to the design:

D Ixj(t)xi(t) = { o ji/ﬁ
i=1

n,

forallj, ke {0,1,...} and xo = 1.

Note 1 The cosine basis is orthonormal with respect to
the design.

Note 2 The representation (1) has infinitely many
parameters Bo, B1, . ..
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Alternative models 4= {M3,..., M} are of the form

(1) =Bo+ Y Bixk(t),

kek;

where K is a subset of {1,...,j} and K <n.
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(1) =Bo+ Y Bixk(t),

kek;

where K is a subset of {1,...,j} and K <n.
A common version of such a model is

J
Hj(t) = Bo + Z BrXxk(t).
k=1
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A

Alternative models A= {M4,..., Mg} are of the form

(1) =Bo+ Y Bixk(t),

kek;

where K is a subset of {1,...,j} and K <n.
A common version of such a model is

J
Hj(t) = Bo + Z BrXxk(t).
k=1

The MLE of By is

A L
Be==>x(t)Y, k=0,1,...,n—1.
n«
=1
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Distributional properties Sample coefficients satisfy:

1. Bo, ..., Bn_1 are mutually independent.

n n
2. B ~NG Y p(tdxk(t), 2), k=0,1,...,n—1.
i=1
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LAlternative Models

Distributional properties Sample coefficients satisfy:
1. Bo, ..., Bn-1 are mutually independent.

n n
2. B ~NG Y p(tdxk(t), 2), k=0,1,...,n—1.
i=1

Under Hg
vnBk~N(0,1), k=1,...,n-1.

If we assume merely independence of errors
1. and 2. continue to hold asymptotically.
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:

Normalized Maximum Likelihood (NML) model
Denote the class of normal densities for M;, j=0,1,... ,K
M;={f(y;B));B;€©; c RN}
where

Bj=(BOIBII---IBkj)/I y=()’1,---')’n),-
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Denote the class of normal densities for M;, j=0,1,...,K
M;={f(y;B));B; € ©; CRY}
where

Bj=(Bo,B1,..-.By), y=01....yn)
The shortest "codelength” of data y with M; is

1 .
log ————, Bi(y) isthe MLE of B;.
fly: B;(y)) ! ’
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Normalized Maximum Likelihood (NML) model
Denote the class of normal densities for M;, j=0,1,...,K
M;={f(y;B));B; € ©; CRY}
where

Bj=(Bo,B1,..-.By), y=01....yn)
The shortest "codelength” of data y with M; is

log—————,  Bi(y) isthe MLE of B..
Fly: Bi(y)) ! !

If we use q(y), the excess code length is
1 1 G /)

lo —lo ~ =
Ya» vy T YT aw
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Minimax solution
The NML density function for M; is

fly: ﬁj(}'))
[ fx:Bix))dx

B;(x)€0;

fly:h =



A data-driven lack-of-fit test of regression functions
LAlternative Models—Model Class of Density Functions

Minimax solution
The NML density function for M; is

(v Biy))

fly:)=
B;(x)€0;
It solves the minimax problem
. fly: Bi(y))
minmaxlog————
a vy qly)

with the unique solution § = f(; ).
(Shtarkov 1987, Rissanen 1996).

[ fOGB(x)) dx’

A
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Maxmin solution

The NML density f‘(;j) is also the solution of the maxmin
problem

. fly: Bi(y))
maxminEglog ————
g 9 aly)

(Rissanen 2001 and 2007).
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NML Density for \M;

_fs B;(y))
cy)

where the numerator is the LF evaluated at the MLE:

fly:i

. 1Z R R
FlyiBiy)) = @y expl-> Y (vi— B + 5 3 2]
i=1

keK;
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NML Density for \M;

_f: By))
cy)

where the numerator is the LF evaluated at the MLE:

fly:i

. 1Z R R
FlyiBiy)) = @y expl-> Y (vi— B + 5 3 2]
i=1

keK;
and the denominator
cG) = J £ (x: By () dx
B;(x)€0;

is the parametric complexity of the model M;.
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The MDL codelength for y with M;:

1 R X
log —— = —log f(y;j) = —log f(y; B;(¥)) +log C(M)).
;N
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is the stochastic complexity of data y relative to M;.
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The MDL codelength for y with M;:

1 . .
log —— = —log f(y:j) = —log f(y; Bj(y)) + log C(M)).
fy:))

is the stochastic complexity of data y relative to M;.
It can be shown that
nliB;l12 _nllii,-ll2

~2log f(y:j) = kj (log ko2 ko2
n n

+1)+log ki+a(y),

where aﬁ = % and a(y) is common to all M;.
Denote

MDL; = -2 log f(y:)).
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The MDL codelength for y with M;:

1 . .
log —— = —log f(y:j) = —log f(y; Bj(y)) + log C(M)).
fy:))

is the stochastic complexity of data y relative to M;.
It can be shown that
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n n
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Model probabilities

Given the data y, f‘(y;j) can be interpreted as the
likelihood of the model M;, j=1,2,...,K
This leads to the NML distribution for models

fly:J ~MDL;/2
B y) = fly:)) _exp( j/2)

Y fyid X exp(-MDLy/2)

A
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Model probabilities

Given the data y, f‘(y;j) can be interpreted as the
likelihood of the model M;, j=1,2,...,K
This leads to the NML distribution for models

i _ exp(-MDL;/2)

pU;y) =

Given the data y, we may compute the probability

po(y) = p(Mao; y).

Y fyid X exp(-MDLy/2)

A
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Model probabilities

Given the data y, f‘(y;j) can be interpreted as the
likelihood of the model M;, j=1,2,...,K
This leads to the NML distribution for models

i _ exp(=MDL;/2)
PN (0D YK exp(=MDLy/2)

Given the data y, we may compute the probability

pU;y) =

po(y) = p(Mo; y).

The idea of the test:

reject Mg at level a if po(y) less than the a-quantile of
po(y)’s null distribution.

A
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Distribution of py(y)

» the null hypothesis and

A related test based on BIC. (Aerts & Claeskens 2004)
Results on the asymptotic distribution of po(y) under
» local alternatives.

A
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Distribution of py(y)

A related test based on BIC. (Aerts & Claeskens 2004)
Results on the asymptotic distribution of po(y) under
» the null hypothesis and

» local alternatives.
complicated.

Here the distribution of po(y) seems to be more
A topic for further research.

A
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