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The Model

Nonparametric regression model

Observe Y1, . . . , Yn from

the model

Y = μ(t) + ϵ, t = (− 1/2)/n,  = 1, . . . , n,

ϵ1, . . . ϵn are i.i.d. N(0,1),

where the unknown function μ is defined on [0,1].
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Hypothesis

Hypothesis

We wish to test the no-effect hypothesis

H0 : μ(t) = β0 for all t ∈ [0,1],

where β0 ∈ R is an unknown constant.

The test will rely on an orthogonal series
representation for μ:

μ(t) = β0 +
∞
∑

j=1

βjj(t),  ∈ [0,1], (1)

where

βj =
1
∫

0

j(t)μ(t)dt, j = 0,1, . . .

and
{1, 1, 2, . . .} is an orthonormal basis for μ ∈ L2[0,1].
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Hypothesis

Example: An example of such a basis is

j(t) =
p

2cos(πjt), j = 1,2, . . . .

Wavelets and orthogonal polynomials are other
examples.

The basis functions are also assumed to be orthonormal
with respect to the design:

n
∑

=1

j(t)k(t) =
�

0, j 6= k
n, j = k

for all j, k ∈ {0,1, . . .} and 0 ≡ 1.
Note 1 The cosine basis is orthonormal with respect to
the design.

Note 2 The representation (1) has infinitely many
parameters β0, β1, . . .
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Alternative Models

Alternative models A = {M1, . . . ,MK} are of the form

μj(t) = β0 +
∑

k∈Kj

βkk(t),

where Kj is a subset of {1, . . . , j} and K < n.

A common version of such a model is

μj(t) = β0 +
j
∑

k=1

βkk(t).

The MLE of βk is

β̂k =
1

n

n
∑

=1

k(t)Y, k = 0,1, . . . , n− 1.
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Alternative Models

Distributional properties Sample coefficients satisfy:

1. β̂0, . . . , β̂n−1 are mutually independent.

2. β̂k ∼ N(1n
n
∑

=1
μ(t)k(t),

1
n ), k = 0,1, . . . , n− 1.

Under H0

p
nβ̂k ∼ N(0,1), k = 1, . . . , n− 1.

If we assume merely independence of errors
1. and 2. continue to hold asymptotically.
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Alternative Models Model Class of Density Functions

Normalized Maximum Likelihood (NML) model

Denote the class of normal densities for Mj, j=0,1,. . . ,K

Mj = { ƒ (y;βj);βj ∈ Θj ⊂ Rkj}

where

βj = (β0, β1, . . . , βkj)
′, y = (y1, . . . , yn)′.

The shortest "codelength" of data y withMj is

log
1

ƒ
�

y; β̂j(y)
�
, β̂j(y) is the MLE of βj.

If we use q(y), the excess code length is

log
1

q(y)
− log

1

ƒ
�

y; β̂j(y)
�
= log

ƒ
�

y; β̂j(y)
�

q(y)
.
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Alternative Models Model Class of Density Functions

Minimax solution

The NML density function forMj is

ƒ̂ (y; j) =
ƒ
�

y; β̂j(y)
�

∫

β̂j()∈Θj

ƒ
�

; β̂j()
�

d
.

It solves the minimax problem

min
q

mx
y

log
ƒ (y; β̂j(y))

q(y)

with the unique solution q̂ = ƒ̂ (; j).
(Shtarkov 1987, Rissanen 1996).
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Alternative Models Model Class of Density Functions

Maxmin solution

The NML density ƒ̂ (; j) is also the solution of the maxmin
problem

mx
g

min
q

Eg log
ƒ (y; β̂j(y))

q(y)

(Rissanen 2001 and 2007).
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Alternative Models Model Class of Density Functions

NML Density forMj

ƒ̂ (y; j) =
ƒ
�

y; β̂j(y)
�

C(j)
,

where the numerator is the LF evaluated at the MLE:

ƒ
�

y; β̂j(y)
�

= (2π)−n/2 exp[−
1

2

n
∑

=1

(y − β̂0)2 +
n

2

∑

k∈Kj

β̂2
k
]

and the denominator

C(j) =
∫

β̂j()∈Θj

ƒ
�

; β̂j()
�

d

is the parametric complexity of the modelMj.
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Alternative Models Model Class of Density Functions

The MDL codelength for y withMj:

log
1

ƒ̂ (y; j)
= − log ƒ̂ (y; j) = − log ƒ

�

y; β̂j(y)
�

+ logC(Mj).

is the stochastic complexity of data y relative toMj.

It can be shown that

−2 log ƒ̂ (y; j) = kj
�

log
n‖β̂j‖2

kj σ2n
−
n‖β̂j‖2

kj σ2n
+1
�

+log kj+(y),

where σ2
n
= 1

n and (y) is common to allMj.
Denote

MDLj = −2 log ƒ̂ (y; j).
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Alternative Models Model Class of Density Functions

Model probabilities

Given the data y, ƒ̂ (y; j) can be interpreted as the
likelihood of the modelMj, j = 1,2, . . . , K

This leads to the NML distribution for models

p̂(j;y) =
ƒ̂ (y; j)
∑K

=1 ƒ̂ (y; )
=

exp(−MDLj/2)
∑K

=1 exp(−MDL/2)
.

Given the data y, we may compute the probability

p0(y) = p̂(M0;y).

The idea of the test:

rejectM0 at level α if p0(y) less than the α-quantile of
p0(y)’s null distribution.
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Alternative Models Model Class of Density Functions

Distribution of p0(y)

A related test based on BIC. (Aerts & Claeskens 2004).
Results on the asymptotic distribution of p0(y) under
É the null hypothesis and
É local alternatives.

Here the distribution of p0(y) seems to be more
complicated.
A topic for further research.



A data-driven lack-of-fit test of regression functions

Alternative Models Model Class of Density Functions

Distribution of p0(y)

A related test based on BIC. (Aerts & Claeskens 2004).
Results on the asymptotic distribution of p0(y) under
É the null hypothesis and
É local alternatives.

Here the distribution of p0(y) seems to be more
complicated.
A topic for further research.



A data-driven lack-of-fit test of regression functions

References

References

Aerts, Claeskens & Hart (2004), Bayesian-motivated
tests of function fit and their asymptotis frequentists
properties, Annals of Statistics 32, pp. 2580–2615.

Burnham & Anderson (2002), Model Selection and
Multi-model Inference, Springer

Liski, E. P. (2006), Normalized ML and the MDL
Principle for Variable Selection in Linear Regression
In: Festschrift for Tarmo Pukkila on His 60th
Birthday, 159-172.

Rissanen, J. (1996). Fisher Information and
Stochastic Complexity. IEEE Trans. Information
Theory, IT-42, pp. 40–47.



A data-driven lack-of-fit test of regression functions

References

Rissanen, J. (2000). MDL Denoising. IEEE Trans.
Information Theory, IT-46, pp. 2537–2543.

Rissanen, J. (2001). Strong Optimality of the NML
Models as Universal Codes and Information in Data.
IEEE Trans. Information Theory, IT-47, pp.
1712–1717.

Rissanen, J. (2007), Information and Complexity in
Statistical Modeling, Springer

Shtarkov, Yu. M. (1987). Universal Sequential
Coding of Single Messages. Problems of Information
Transmission, 23, pp. 3–17.


	Outline
	The Model
	Hypothesis
	Alternative Models
	Model Class of Density Functions

	References

