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Survey sampling, sampling theory, finite population

Often a functional relationship exists between population
parameters

• quarterly totals have to sum up to the yearly total

• domain totals have to sum up to the population
total

• totals of smaller domains have to sum up to the
totals of larger domains
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Survey estimates usually do not satisfy the relationships
known for the parameters:

• estimators are random

• estimators from different surveys

• estimators from the same survey, but not additive
(domains)

• different estimation methods for the parameters

However, users usually want that survey estimates
are consistent between themselves − satisfy the
same restrictions known for parameters.
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In this talk

• General Restriction estimator (Knottnerus, 2003)

• Conditional Restriction estimator

applied for domains

• some properties

• simulation study
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General Restriction (GR) estimator

• is a new estimator constructed on the bases of initial
estimators

• is a vector

• restrictions are satisfied

• covariance matrix is explicitly given

• known long ago

• discovered for survey sampling purposes
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Let the parameter vector

θ = (θ1, . . . , θk)
′

be initially unbiasedly estimated by

θ̂ = (θ̂1, . . . , θ̂k)
′

Let

V = E(θ̂ − θ)(θ̂ − θ), nonsingular.

Suppose, parameters have to satisfy restrictions

Rθ = c,

where R : r × k matrix of rank r and c : r × 1 vector of
constants.

For example

R = (1,1, . . . ,1), or R = (−1,1, . . . ,1) and c = 0
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The GR-estimator

θ̂gr = θ̂ + K
(
c−Rθ̂

)
K = VR′

(
RVR′

)−1

Vgr ≡ Cov
(
θ̂gr

)
= (I−KR)V.

Some simple properties,

Rθ̂gr = c,

θ̂gr = θ̂, if Rθ̂ = c,

Eθ̂gr = θ
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Special features of

θ̂gr = θ̂ + K
(
c−Rθ̂

)
K = VR′

(
RVR′

)−1

due to the finite population sampling

If V is not known, the θ̂gr is not estimator.

Replacing V by V̂ gives

ˆ̂θgr = θ̂ + V̂R′
(
RV̂R′

)−1 (
c−Rθ̂

)
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Expanding ˆ̂θgr into Taylor series at the point (θ,V) gives
the following linear term:

ˆ̂θgr ≈ ˆ̂θgr

∣∣∣
(θ,V)

+

[
dˆ̂θgr

dV̂

]′
(θ,V)

vec
(
V̂ −V

)
+

[
dˆ̂θgr

dV̂

]′
(θ,V)

vec
(
θ̂ − θ

)

= θ̂ + K
(
c−Rθ̂

)
= θ̂gr
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Further properties

The θ̂gr is a linear minimum variance estimator of θ,
given θ̂ and given the information that c−Rθ = 0.

Can be shown by using projection theory.

The θ̂gr is more effective than θ̂ can be simply seen
from

V −Vgr = KRV = VR′(RVR′)−1RV > 0,

because matrix of type

AA′

is positive definite if A is of full rank (true by assumptions
here).
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Further properties

If the initial θ̂ is biased, E
(
θ̂
)
= θ+B, then the restriction

estimator θ̂gr still exists (satisfies restrictions), but biased:

E
(
θ̂gr

)
= θ + (I−KR)B.

It can be shown that

MSE
(
θ̂gr

)
= (I−KR) ·MSE(θ̂)

attains its minimum for

K = MSE(θ̂) ·R′
(
R ·MSE(θ̂) ·R′

)−1
.

The bias of θ̂gr satisfies the following restrictions

R(I−KR)B = 0
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Further properties

θ̂gr = θ̂ + K
(
c−Rθ̂

)
K = VR′

(
RVR′

)−1

Cov
(
θ̂gr

)
= (I−KR)V.

Another matrix representation through covariance matrices

K = Cov(θ̂,Rθ̂) Cov−1(Rθ̂)

Cov(θ̂gr) = Cov(θ̂,Rθ̂) Cov−1(Rθ̂) Cov(θ̂,Rθ̂)
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Conditional restriction estimator

In Statistical Agencies, after publishing main estimates

• a need occurs for additional estimates

• they should be consistent with the published ones

• the published ones can not be changed
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Conditional restriction estimator

• find the restriction estimator so that the published
numbers appear in restrictions as fixed constants

• the variance formula gives now the conditional variance
(underestimates)

• find the unconditional variance!
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Conditional restriction estimator for domain estimation

We have initial estimators Θ̂1 and Θ̂2 for domain parameters

We want to put restrictions without changing Θ̂1

Find Θ̂gr
2 so that

RΘ̂gr
2 = Θ̂1

Corresponding GR-estimator is

Θ̂gr
2 = Θ̂2 + K(Θ̂1 −RΘ̂2),

where K = V2R
′(RV2R

′)−1.

What about Cov(θ̂gr) now?
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Let V1 = Cov(Θ̂1), V2 = Cov(Θ̂2), V21 = Cov(Θ̂2, Θ̂1)

The unconditional covariance matrix is

Cov(Θ̂gr
2 ) = Cov(KΘ̂1 + PΘ̂2) =

= PV2 + KV1K
′ + PV21K

′ + (PV21K
′)′,

where P = I−KR
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Simulation study

Population is based on Estonian LFS survey data.

Population size: 2000 persons (1192 households)

Number of domains D = 3

Target variables:

• monthly salary (thousand kroons)

• higher education (binary variable)
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Table 1. Population characteristics

Domain # of persons Total salary Total education
1 1 019 4 999 129
2 733 4 614 209
3 248 1 396 36

Total 2 000 11 010 374
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Simulations

10,000 independent SI-samples were drawn from the
population.

GR-estimates of domains θ̂
gr
1 , θ̂

gr
2 , θ̂

gr
3 were calculated

• based on ratio estimators for domains θ̂1, θ̂2, θ̂3

• using estimated population total for restriction θ̂U

• using known covariance matrix
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Consistency problem

Figure 1. Difference between the sum of domain total
estimates and estimated population total:
θ̂1 + θ̂2 + θ̂3 − θ̂U
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SI-design, binary variable

Sample Parameter D1 D2 D3 Sum U
1 θ̂ 144 277 29 450 470

θ̂
GR 152 287 31 470 470

2 θ̂ 138 153 40 331 330
θ̂

GR 138 152 40 330 330
3 θ̂ 170 199 22 391 370

θ̂
GR 162 188 20 370 370

... ... ... ... ...
Mean θ̂ 130 209 36 375 374

θ̂
GR 130 209 36 375 374

True 129 209 36 374 374
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Simulation results (1)

Figure 2. Empirical and theoretical variance of estimated
domain total for binary variable:

Cov(Θ̂gr
2 ) = PV2 + KV1K

′ + PV21K
′ + (PV21K

′)′
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Simulation results (2)

Figure 3. Empirical and theoretical variance of estimated
domain total for continuous variable:

Cov(Θ̂gr
2 ) = PV2 + KV1K

′ + PV21K
′ + (PV21K

′)′
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Thank You!
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