Conditional restriction estimator for domains

Natalja Lepik, Kaja Sõstra and Imbi Traat

University of Tartu, Estonia Statistics of Estonia Survey sampling, sampling theory, finite population

Often a functional relationship exists between population parameters

- quarterly totals have to sum up to the yearly total
- domain totals have to sum up to the population total
- totals of smaller domains have to sum up to the totals of larger domains

Survey estimates usually do not satisfy the relationships known for the parameters:

- estimators are random
- estimators from different surveys
- estimators from the same survey, but not additive (domains)
- different estimation methods for the parameters

However, users usually want that survey estimates are consistent between themselves — satisfy the same restrictions known for parameters.

In this talk

- General Restriction estimator (Knottnerus, 2003)
- Conditional Restriction estimator

applied for domains

- some properties
- simulation study

General Restriction (GR) estimator

- is a new estimator constructed on the bases of initial estimators
- is a vector
- restrictions are satisfied
- covariance matrix is explicitly given
- known long ago
- discovered for survey sampling purposes

Let the parameter vector

$$\theta = (\theta_1, \ldots, \theta_k)'$$

be initially unbiasedly estimated by

$$\widehat{\theta} = (\widehat{\theta}_1, \dots, \widehat{\theta}_k)'$$

Let

$$\mathbf{V} = E(\hat{\theta} - \theta)(\hat{\theta} - \theta),$$
 nonsingular.

Suppose, parameters have to satisfy restrictions

 $\mathbf{R}\theta = \mathbf{c},$

where \mathbf{R} : $r \times k$ matrix of rank r and \mathbf{c} : $r \times 1$ vector of constants.

For example

$$\mathbf{R}=(1,1,\ldots,1), \text{ or } \mathbf{R}=(-1,1,\ldots,1) \text{ and } \mathbf{c}=\mathbf{0}$$

The GR-estimator

$$\widehat{\theta}_{gr} = \widehat{\theta} + \mathbf{K} \left(\mathbf{c} - \mathbf{R} \widehat{\theta} \right)$$

$$\mathbf{K} = \mathbf{V} \mathbf{R}' \left(\mathbf{R} \mathbf{V} \mathbf{R}' \right)^{-1}$$

$$\mathbf{V}_{gr} \equiv \mathbf{C} \mathbf{ov} \left(\widehat{\theta}_{gr} \right) = (\mathbf{I} - \mathbf{K} \mathbf{R}) \mathbf{V}.$$

Some simple properties,

$$\mathbf{R}\widehat{\theta}_{gr} = \mathbf{c},$$
$$\widehat{\theta}_{gr} = \widehat{\theta}, \text{ if } \mathbf{R}\widehat{\theta} = \mathbf{c},$$
$$E\widehat{\theta}_{gr} = \theta$$

8

Special features of

$$egin{array}{rll} \widehat{ heta}_{gr} &=& \widehat{ heta} + \mathrm{K} \left(\mathrm{c} - \mathrm{R} \widehat{ heta}
ight) \ \mathrm{K} &=& \mathrm{VR}' \left(\mathrm{RVR}'
ight)^{-1} \end{array}$$

due to the finite population sampling

If V is not known, the $\hat{\theta}_{gr}$ is not estimator.

Replacing V by \widehat{V} gives

$$\widehat{\widehat{\theta}}_{gr} = \widehat{\theta} + \widehat{\mathbf{V}}\mathbf{R}' \left(\mathbf{R}\widehat{\mathbf{V}}\mathbf{R}'\right)^{-1} \left(c - \mathbf{R}\widehat{\theta}\right)$$

Expanding $\hat{\theta}_{gr}$ into Taylor series at the point (θ, \mathbf{V}) gives the following linear term:

$$\widehat{\theta}_{gr} \approx \widehat{\theta}_{gr} \Big|_{(\theta, \mathbf{V})} + \left[\frac{d\widehat{\theta}_{gr}}{d\widehat{\mathbf{V}}} \right]'_{(\theta, \mathbf{V})} \operatorname{vec} \left(\widehat{\mathbf{V}} - \mathbf{V} \right) + \left[\frac{d\widehat{\theta}_{gr}}{d\widehat{\mathbf{V}}} \right]'_{(\theta, \mathbf{V})} \operatorname{vec} \left(\widehat{\theta} - \theta \right)$$
$$= \widehat{\theta} + \mathbf{K} \left(\mathbf{c} - \mathbf{R}\widehat{\theta} \right) = \widehat{\theta}_{gr}$$

Further properties

The $\hat{\theta}_{gr}$ is a linear minimum variance estimator of θ , given $\hat{\theta}$ and given the information that $\mathbf{c} - \mathbf{R}\theta = 0$.

Can be shown by using projection theory.

The $\widehat{\theta}_{gr}$ is more effective than $\widehat{\theta}$ can be simply seen from

$$\mathbf{V} - \mathbf{V}_{qr} = \mathbf{K}\mathbf{R}\mathbf{V} = \mathbf{V}\mathbf{R}'(\mathbf{R}\mathbf{V}\mathbf{R}')^{-1}\mathbf{R}\mathbf{V} > \mathbf{0},$$

because matrix of type

AA'

is positive definite if A is of full rank (true by assumptions here).

Further properties

If the initial $\hat{\theta}$ is biased, $E(\hat{\theta}) = \theta + \mathbf{B}$, then the restriction estimator $\hat{\theta}_{gr}$ still exists (satisfies restrictions), but biased:

$$E\left(\widehat{\theta}_{gr}\right) = \theta + (\mathbf{I} - \mathbf{KR})\mathbf{B}.$$

It can be shown that

$$MSE\left(\widehat{\theta}_{gr}\right) = (\mathbf{I} - \mathbf{KR}) \cdot MSE(\widehat{\theta})$$

attains its minimum for

$$\mathbf{K} = MSE(\hat{\theta}) \cdot \mathbf{R}' \left(\mathbf{R} \cdot MSE(\hat{\theta}) \cdot \mathbf{R}' \right)^{-1}.$$

The bias of $\hat{\theta}_{gr}$ satisfies the following restrictions

$$R(I - KR)B = 0$$

Further properties

$$\widehat{\theta}_{gr} = \widehat{\theta} + \mathbf{K} \left(\mathbf{c} - \mathbf{R} \widehat{\theta} \right)$$

$$\mathbf{K} = \mathbf{V} \mathbf{R}' \left(\mathbf{R} \mathbf{V} \mathbf{R}' \right)^{-1}$$

$$\mathbf{Cov} \left(\widehat{\theta}_{gr} \right) = (\mathbf{I} - \mathbf{K} \mathbf{R}) \mathbf{V}.$$

Another matrix representation through covariance matrices

$$\mathbf{K} = \operatorname{Cov}(\hat{\theta}, \mathbf{R}\hat{\theta}) \operatorname{Cov}^{-1}(\mathbf{R}\hat{\theta})$$
$$\operatorname{Cov}(\hat{\theta}_{gr}) = \operatorname{Cov}(\hat{\theta}, \mathbf{R}\hat{\theta}) \operatorname{Cov}^{-1}(\mathbf{R}\hat{\theta}) \operatorname{Cov}(\hat{\theta}, \mathbf{R}\hat{\theta})$$

Conditional restriction estimator

In Statistical Agencies, after publishing main estimates

- a need occurs for additional estimates
- they should be consistent with the published ones
- the published ones can not be changed

Conditional restriction estimator

- find the restriction estimator so that the published numbers appear in restrictions as fixed constants
- the variance formula gives now the conditional variance (underestimates)
- find the unconditional variance!

Conditional restriction estimator for domain estimation

We have initial estimators $\hat{\Theta}_1$ and $\hat{\Theta}_2$ for domain parameters

We want to put restrictions without changing $\hat{\Theta}_1$

Find $\hat{\Theta}_2^{gr}$ so that

$$\mathbf{R}\hat{\Theta}_2^{gr} = \hat{\Theta}_1$$

Corresponding GR-estimator is

$$\begin{split} \hat{\Theta}_2^{gr} &= \hat{\Theta}_2 + K(\hat{\Theta}_1 - R\hat{\Theta}_2), \\ \text{where } K &= V_2 R' (RV_2 R')^{-1}. \end{split}$$

What about $Cov(\hat{\theta}_{gr})$ now?

Let
$$V_1 = \text{Cov}(\hat{\Theta}_1)$$
, $V_2 = \text{Cov}(\hat{\Theta}_2)$, $V_{21} = \text{Cov}(\hat{\Theta}_2, \hat{\Theta}_1)$

The unconditional covariance matrix is

$$Cov(\hat{\Theta}_2^{gr}) = Cov(K\hat{\Theta}_1 + P\hat{\Theta}_2) =$$

= PV₂ + KV₁K' + PV₂₁K' + (PV₂₁K')',

where $\mathbf{P}=\mathbf{I}-\mathbf{K}\mathbf{R}$

Simulation study

Population is based on Estonian LFS survey data.

Population size: 2000 persons (1192 households)

Number of domains D = 3

Target variables:

- monthly salary (thousand kroons)
- higher education (binary variable)

Table 1. Population characteristics

Domain	# of persons	Total salary	Total education
1	1 019	4 999	129
2	733	4 614	209
3	248	1 396	36
Total	2 000	11 010	374

Simulations

10,000 independent SI-samples were drawn from the population.

GR-estimates of domains $\hat{\theta}_1^{gr}$, $\hat{\theta}_2^{gr}$, $\hat{\theta}_3^{gr}$ were calculated

- based on ratio estimators for domains $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$
- using estimated population total for restriction $\hat{\theta}_U$
- using known covariance matrix

Consistency problem

Figure 1. Difference between the sum of domain total estimates and estimated population total: $\hat{\theta}_1 + \hat{\theta}_2 + \hat{\theta}_3 - \hat{\theta}_U$

SI-design, binary variable

Sample	Parameter	D1	D2	D3	Sum	U
1	$\widehat{oldsymbol{ heta}}$	144	277	29	450	470
	$\widehat{oldsymbol{ heta}}^{GR}$	152	287	31	470	470
2	$\widehat{oldsymbol{ heta}}$	138	153	40	331	330
	$\widehat{oldsymbol{ heta}}^{GR}$	138	152	40	330	330
3	$\widehat{oldsymbol{ heta}}$	170	199	22	391	370
	$\widehat{oldsymbol{ heta}}^{GR}$	162	188	20	370	370
			• • •			•••
Mean	$\widehat{oldsymbol{ heta}}$	130	209	36	375	374
	$\widehat{oldsymbol{ heta}}^{GR}$	130	209	36	375	374
True		129	209	36	374	374

Simulation results (1)

Figure 2. Empirical and theoretical variance of estimated domain total for binary variable:

$$Cov(\hat{\Theta}_{2}^{gr}) = PV_{2} + KV_{1}K' + PV_{21}K' + (PV_{21}K')'$$

Simulation results (2)

Figure 3. Empirical and theoretical variance of estimated domain total for continuous variable:

$$Cov(\hat{\Theta}_{2}^{gr}) = PV_{2} + KV_{1}K' + PV_{21}K' + (PV_{21}K')'$$

References

Knottnerus, P. (2003). Sample Survey Theory. Some Pythagorean Perspectives. New York: Springer

Rao, C.R. (1965). Linear Statistical Inference and Its Applications. New York: Wiley Thank You!