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Survey sampling, sampling theory, finite population

Often a functional relationship exists between population
parameters

e quarterly totals have to sum up to the yearly total

e domain totals have to sum up to the population
total

e totals of smaller domains have to sum up to the
totals of larger domains



Survey estimates usually do not satisfy the relationships
known for the parameters:

e estimators are random

e estimators from different surveys

e estimators from the same survey, but not additive
(domains)

e different estimation methods for the parameters

However, users usually want that survey estimates
are consistent between themselves — satisfy the
same restrictions known for parameters.



In this talk

e General Restriction estimator (Knottnerus, 2003)

e Conditional Restriction estimator

applied for domains

e some properties

e Simulation study



General Restriction (GR) estimator

e iS a new estimator constructed on the bases of initial
estimators

® iS a vector

e restrictions are satisfied

e covariance matrix is explicitly given

e known long ago

e discovered for survey sampling purposes



Let the parameter vector
0 = (917"'79/{:),
be initially unbiasedly estimated by

-~

6 =(04,...,0,)
Let
V = E(0 - 0)(6 — 0), nonsingular.

Suppose, parameters have to satisfy restrictions

R6 = c,

where R : r x kK matrix of rank »r and ¢ : r x 1 vector of
constants.

For example
R=(1,1,...,1), or R=(-1,1,...,1) and ¢ =0
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The GR-estimator

Ogr = 0+K(c—RO
K = VR (RVR/)
Vr Cov (fgr) = (T-KR) V.

Some simple properties,
Rggr — C,
é\gr — 9\, |f Rg = C,

Eégr — 9



Special features of
é\g’]"

K = VR (RVR/)

9‘+K(c—R§)

due to the finite population sampling
If V is not known, the 8, is not estimator.

Replacing V by V gives
6y =0+ VR (RVR/) " (c—R0)



Expanding 5gf,~ into Taylor series at the point (6,V) gives
the following linear term:
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Further properties

The 0y, is a linear minimum variance estimator of 0,
given 0 and given the information that ¢ — R = 0.

Can be shown by using projection theory.

The 8,4 is more effective than § can be simply seen
from

V -V, = KRV = VR/(RVR/) 1RV > 0,
because matrix of type
AA’

is positive definite if A is of full rank (true by assumptions
here).
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Further properties

If the initial § is biased, £ (§) = 6+B, then the restriction
estimator 8, still exists (satisfies restrictions), but biased:

E (0gr) =60+ (I1-KR)B.
It can be shown that
MSE (é‘gr) = (I - KR) - MSE()
attains its minimum for
K = MSE(9) -R/ (R- MSE(9)-R/) "
The bias of égr satisfies the following restrictions

R(I- KR)B =0
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Further properties
Ogr = 0+ K (c—R0)
K = VR (RVR/)
Cov (fgr) = (I-KR)V.

Another matrix representation through covariance matrices

K = Cov(8,RA) Cov 1(RA)

Cov(fyr) = Cov(,RA) Cov 1(RO) Cov(d,RA)
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Conditional restriction estimator

In Statistical Agencies, after publishing main estimates

e a need occurs for additional estimates

e they should be consistent with the published ones

e the published ones can not be changed
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Conditional restriction estimator

e find the restriction estimator so that the published
numbers appear in restrictions as fixed constants

e the variance formula gives now the conditional variance
(underestimates)

e find the unconditional variancel!
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Conditional restriction estimator for domain estimation

We have initial estimators ©; and ©, for domain parameters

We want to put restrictions without changing ©4

Find &% so that
ROY = &,
Corresponding GR-estimator is
0% =6, +K(©; - ROy),
where K = Vo,R/(RV,R/) 1.

What about Cov(fy-) now?
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Let Vi = Cov(©7), Vo = Cov(©05), Vo1 = Cov(©5,01)

T he unconditional covariance matrix is

Cov(©?) = Cov(K©; + POy) =
PV + KV{K'+ PV K + (PVy K'),
where P =1 — KR
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Simulation study
Population is based on Estonian LFS survey data.

Population size: 2000 persons (1192 households)
Number of domains D = 3

Target variables:

e monthly salary (thousand kroons)

e higher education (binary variable)
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Table 1. Population characteristics

Domain | # of persons | Total salary | Total education
1 1 019 4 999 129

2 733 4 614 209

3 248 1 396 36
Total 2 000 11 010 374
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Simulations

10,000 independent SI-samples were drawn from the
population.

GR-estimates of domains 6{", 62", 3" were calculated
e based on ratio estimators for domains 61, 05, 03
e using estimated population total for restriction &;;

e USIiNg known covariance matrix
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Consistency problem
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Figure 1. Difference between the sum of domain total
estimates and estimated population total:

014 02+ 03 — Oy
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SI-design, binary variable

Sample | Parameter | D1 | D2 | D3 | Sum U
1 0 144 | 277 | 29 | 450 | 470
e 152 | 287 | 31 | 470 | 470

> 0 138 | 153 | 40 | 331 | 330
e 138 | 152 | 40 | 330 | 330

3 0 170 | 199 | 22 | 391 | 370
e 162 | 188 | 20 | 370 || 370

Mean 0 130 | 209 | 36 | 375 | 374
R 130 | 209 | 36 | 375 | 374

True 129 | 200 | 36 | 374 | 374
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Simulation results (1)
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Figure 2. Empirical and theoretical variance of estimated
domain total for binary variable:

COV(@%T) = PV2 + Kle, ‘|‘ PV21K, + (PVle/)/
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Simulation results (2)
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Figure 3. Empirical and theoretical variance of estimated
domain total for continuous variable:

COV(@%T) = PVQ + Kle, ‘|‘ PV21K, + (PVle/)/
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T hank You!
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