Infinite Viterbi alignment

J. Lember

University of Tartu, Estonia

with A. Koloydenko

University of Nottingham, UK

M. Käärik

University of Tartu, Estonia

Hidden Markov Model (HMM)

Y – irreducible, aperiodic Markov Chain with finite state space S, |S| = k, transition matrix (p_{ij}) .

Y is sometimes called as the regime.

To each state $l \in S$ corresponds an emission distribution P_l with densities f_l w.r.t. some reference measure λ on $\mathcal{B}(\mathbb{R}^d)$.

HMM:

To any realization y_1, y_2, \ldots of Y corresponds a sequence of independent random variables X_1, X_2, \ldots , where $X_n \sim P_{y_n}$.

HMM's are used (among others):

Speech recognition:

Acoustic-phonetic modelling (complex)

Computational molecular biology:

DNA-sequence alignment
Y has 3 states: mach, deletion, insertion

2. Modelling DNA regions

3.

Assume that the first *n* elements $x_1^n := x_1, \ldots, x_n$ of a realization of *X* are observed.

The corresponding outcomes of Y, y_1, \ldots, y_n are not observed (Y is hidden).

One possible way to estimate hidden y_1, \ldots, y_n is to use the state sequence $q_1^n := q_1, \ldots, q_n \in S^n$ with maximum likelihood. This sequence is called (Viterbi) alignment.

To every observation-sequence corresponds a Viterbi alignment (ignore ties), so we consider a mapping or coding

$$v : \mathbb{R}^n \mapsto S^n, \quad v(x_1^n) = \arg \max_{q_1^n \in S^n} p(q_1^n | x_1^n).$$

In general, it is conceptionally wrong to make the statistical inferences using the max. likelihood sequence as the substitution of the truth. However, when you know the differences between the max. likelihood sequence and truth, and when you take those differences into account, you can still ripe the benefit from it.

The underlying MC Y_1, Y_2, \ldots is very well-studied process. The properties of X_1, X_2, \ldots can be studied as well. What are the (long run) properties of Viterbi alignment?

Note: adding one more observation, x_{n+1} can, in principle, change the whole alignment. Formally, if $v(x_1, \ldots, x_n) = (v_1, \ldots, v_n)$ and $v(x_1, \ldots, x_{n+1}) = (w_1, \ldots, w_n, w_{n+1})$, then it can be so that $w_i \neq v_i$ for every $i = 1, \ldots, n$. What about the asymptotics in this case?

Is there anything like infinite alignment v(X1, X2,...)?
If yes, what are the properties of the process v(X1, X2,...)?

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

 x_1 x_2 x_3 a x_5 x_6 x_7 x_8 a x_{10} x_{11} x_{12} x_{13} x_{14} a x_{17} x_{18}

What can we say about the Viterbi (max likelihood) alignment?

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

	x_1	x_2	x_{3}	a	x_5	x_6	x_7	x_{8}	a	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	\boldsymbol{a}	x_{16}	x_{17}
	?	?	?	1	?	?	?	?	1	?	?	?	?	?	1	?	?
The a's correspond to the state 1. Then use the optimality principle.														ple.			

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

												x_{12}						
	q_1	q_2	q_{3}	1	?	?	?	?	1	?	?	?	?	?	1	?	?	
-	The o	obse	ervat	ion	s to	firs	t a	can	be	usec	l to	deter	mine	the	firs	t pie	ce.	

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

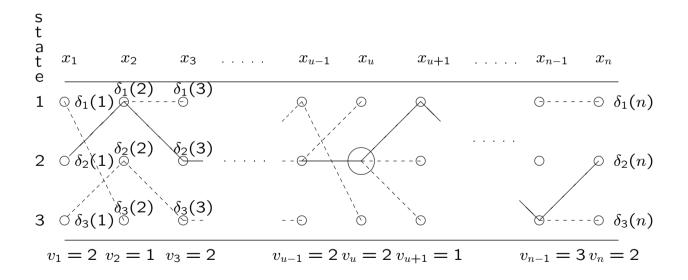
 $\frac{x_1}{q_1} \frac{x_2}{q_2} \frac{x_3}{q_3} \frac{a}{1} \frac{x_5}{q_4} \frac{x_6}{q_5} \frac{x_7}{q_6} \frac{x_8}{q_7} \frac{a}{1} \frac{x_{10}}{q_{10}} \frac{x_{11}}{q_{11}} \frac{x_{12}}{q_{12}} \frac{x_{13}}{q_{14}} \frac{x_{14}}{a} \frac{a}{1} \frac{x_{16}}{?} \frac{x_{17}}{?}$ The observations from second to third a can be used to determine the second piece.

Suppose there \exists set $A : P_1(A) > 0$ but $P_2(A) = \cdots = P_K(A) = 0$. To emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

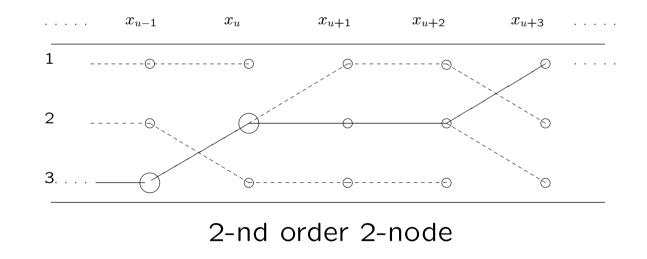
 $\frac{x_1}{q_1} \frac{x_2}{q_2} \frac{x_3}{q_3} \frac{a}{q_3} \frac{x_5}{q_5} \frac{x_6}{q_6} \frac{x_7}{q_6} \frac{x_8}{q_7} \frac{a}{q_{10}} \frac{x_{11}}{q_{11}} \frac{x_{12}}{q_{12}} \frac{x_{13}}{q_{14}} \frac{x_{16}}{q_{16}} \frac{x_{17}}{q_{17}}$ Finally the last piece. So, the whole alignment can be constructed piecewise. The process *X* is ergodic: every realization of the process has infinitely many **a**'s. Hence, the piecewise alignment can be extended to infinity – we have an infinite (piecewise) alignment! How to generalize the concept of a? The answer lies in the Viterbi aligorithm – the dynamic programming algorithm to find the (max-likelihood) alignment.

$$\delta_l(u) := \max_{q_1, \dots, q_{u-1}} p(q_1, \dots, q_{u-1}, q_n = l; x_1, \dots, x_u).$$



Let x_1, \ldots, x_u be the first u observations. We call x_u an l-node if $\delta_l(u)p_{lj} \ge \delta_i(u)p_{ij}, \quad \forall i, j \in S.$ (1) Restriction of the concept of node: in order an *l*-node to exists, it is necessary $p_{lj} > 0 \ \forall j$. But HMM can have a 0 in every row.

Generalization of the node – r-order node:



A node – 0-order node.

In general, to understand that x_u is an r-order node, one has to look at the observations

```
x_1, x_2, \ldots, \frac{x_u}{u}, x_{u+1}, \ldots, x_{u+r}
```

On the other hand, a was a node independently of the previous observations. Could we have something like that as well?

A barrier is a block of observations that contains a (r-order) node independently of the observations before (and after) it.

 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, \dots$

The block $x_6, x_7, x_8, x_9, x_{10}, x_{11}$ is a barrier of length 6.

a – barrier of length 1.

Thm (Koloydenko, L.; simplified version) Assume:

1) for each state $l \in S$

$$P_l(x: f_l(x) \max_{j \in I} \{p_{jl}\}) > \max_{i,i \neq l} \{f_i(x) \max_{j \in I} \{p_{ji}\}\}) > 0.$$

2) the supports of f_l have non-empty intersection; Then there exists:

1) a set $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_M$ such that every vector $(x_1, \ldots, x_M) \in \mathcal{X}$ is a barrier with x_{M-r} being the corresponding r-order *l*-node; 2) a *M*-tuple of states $(y_1, \ldots, y_M) \in S^M$ such that $y_{M-r} = l$ and

$$P((X_1,...,X_M) \in \mathcal{X} | Y_1 = y_1,...,Y_M = y_M) > 0$$

 $P(Y_1 = y_1,...,Y_M = y_M) > 0.$

Thm. applies for a large class of HMM's. Essentially generalizes the earlier results by Caliebe and Rösler (2002).

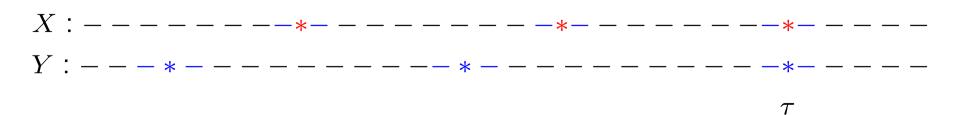
1) there is a positive probability that the process X generates a barrier from \mathcal{X} in observations (observable);

2) there is a positive probability that the process X generates a barrier from \mathcal{X} in observations <u>and</u> the underlying MC Y generates (y_1, \ldots, y_M) at the same time.

By ergodic argument that means:

1) almost every realization of X has infinitely many barriers (and, hence, nodes);

2) almost every realization of X has infinitely many barriers generated by the block (y_1, \ldots, y_M) .



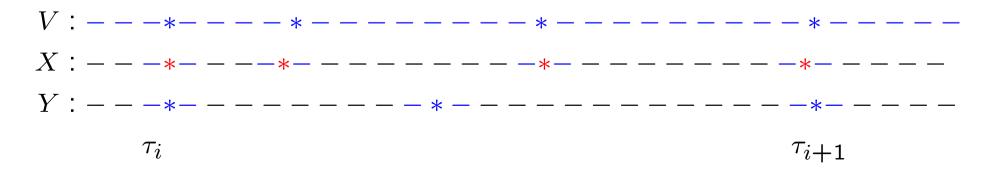
By 1), for almost every realization we can define piecewise infinite alignment. Formally, we have a map (coding)

$$v: \mathbb{R}^{\infty} \mapsto S^{\infty}.$$

The process V := v(X) is called the alignment process. So

$$V_1, V_2, \ldots = v(X_1, X_2, \ldots)$$

From 2), it follows: a) the process X is regenerative with respect to τ ; b) the process V is regenerative with respect to τ ; c)the process (X, V) is regenerative with respect to τ ;



V is not stationary, but can be easily stationarized by embedding into double-sided process. Then V as well as (X, V) ergodic.

Regenerativity (ergodicity) immediately gives SLLN type of theorems.

Example: States of Y: 1 2. Observations x_1, \ldots, x_n . Subsamples based on Viterbi alignment $P_l^n, l \in S$.

 $X: x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7} \quad x_{8} \quad x_{9} \quad x_{10}$ $v: 1 \quad 2 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad 2 \quad 2 \quad 1$ The subsamples (empirical measures) are $x_{1} \quad x_{4} \quad x_{6} \quad x_{10} \qquad P_{1}^{10}$ $x_{2} \quad x_{3} \quad x_{5} \quad x_{7} \quad x_{8} \quad x_{9} \qquad P_{2}^{10}$

Using the regenerativity (or ergodicity) of (X, V), it easily follows that there exists probability measures Q_l such that a.s.

$$P_l^n \Rightarrow Q_l, \quad \forall l$$

Important: Q_l might be very different from P_l

This difference is not taken into account in Viterbi training.

This difference is taken into account in adjusted Viterbi training.