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Hidden Markov Model (HMM)

Y – irreducible, aperiodic Markov Chain with finite state space S,

|S| = k, transition matrix (pij).

Y is sometimes called as the regime.

To each state l ∈ S corresponds an emission distribution Pl with

densities fl w.r.t. some reference measure λ on B(Rd).

HMM:

To any realization y1, y2, . . . of Y corresponds a sequence of

independent random variables X1, X2, . . ., where Xn ∼ Pyn.



HMM’s are used (among others):

Speech recognition:

Acoustic-phonetic modelling (complex)

Computational molecular biology:

1. DNA-sequence alignment

Y has 3 states: mach, deletion, insertion

2. Modelling DNA regions

3. ....



Assume that the first n elements xn
1 := x1, . . . , xn of a realization of

X are observed.

The corresponding outcomes of Y , y1, . . . , yn are not observed (Y

is hidden).

One possible way to estimate hidden y1, . . . , yn is to use the state

sequence qn
1 := q1, . . . , qn ∈ Sn with maximum likelihood. This se-

quence is called (Viterbi) alignment.

To every observation-sequence corresponds a Viterbi alignment (ig-

nore ties), so we consider a mapping or coding

v : Rn 7→ Sn, v(xn
1) = arg max

qn
1∈Sn

p(qn
1|xn

1).



In general, it is conceptionally wrong to make the statistical infer-

ences using the max. likelihood sequence as the substitution of the

truth. However, when you know the differences between the max.

likelihood sequence and truth, and when you take those differences

into account, you can still ripe the benefit from it.

The underlying MC Y1, Y2, . . . is very well-studied process.

The properties of X1, X2, . . . can be studied as well.

What are the (long run) properties of Viterbi alignment?

Note: adding one more observation, xn+1 can, in principle, change

the whole alignment. Formally, if v(x1, . . . , xn) = (v1, . . . , vn) and

v(x1, . . . , xn+1) = (w1, . . . , wn, wn+1), then it can be so that wi 6= vi

for every i = 1, . . . , n. What about the asymptotics in this case?

1. Is there anything like infinite alignment v(X1, X2, . . .)?

2. If yes, what are the properties of the process v(X1, X2, . . .)?



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x17 x18

What can we say about the Viterbi (max likelihood) alignment?



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x16 x17
? ? ? 1 ? ? ? ? 1 ? ? ? ? ? 1 ? ?

The a’s correspond to the state 1. Then use the optimality principle.



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x16 x17
q1 q2 q3 1 ? ? ? ? 1 ? ? ? ? ? 1 ? ?

The observations to first a can be used to determine the first piece.



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x16 x17
q1 q2 q3 1 q5 q6 q7 q8 1 ? ? ? ? ? 1 ? ?

The observations from first to second a can be used to determine the

second piece.



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x16 x17
q1 q2 q3 1 q4 q5 q6 q7 1 q10 q11 q12 q13 q14 1 ? ?

The observations from second to third a can be used to determine

the second piece.



An easy but yet insightful special case.

Suppose there ∃ set A : P1(A) > 0 but P2(A) = · · · = PK(A) = 0. To

emit an observation from A, Y has to be in the state 1, a.s.

Suppose we have observations:

x1 x2 x3 a x5 x6 x7 x8 a x10 x11 x12 x13 x14 a x16 x17
q1 q2 q3 1 q4 q5 q6 q7 1 q10 q11 q12 q13 q14 1 q16 q17

Finally the last piece. So, the whole alignment can be constructed

piecewise. The process X is ergodic: every realization of the process

has infinitely many a’s. Hence, the piecewise alignment can be ex-

tended to infinity – we have an infinite (piecewise) alignment!



How to generalize the concept of a? The answer lies in the Viterbi

aligorithm – the dynamic programming algorithm to find the (max-

likelihood) alignment.

δl(u) := max
q1,...,qu−1

p(q1, . . . , qu−1, qn = l;x1, . . . , xu).
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v1 = 2 v2 = 1 v3 = 2 vu+1 = 1vu−1 = 2 vn−1 = 3 vn = 2vu = 2

x1 x2 x3 xu−1 xu xu+1 xn−1 xn

Let x1, . . . , xu be the first u observations. We call xu an l-node if

δl(u)plj ≥ δi(u)pij, ∀i, j ∈ S. (1)



Restriction of the concept of node: in order an l-node to exists, it is

necessary plj > 0 ∀j. But HMM can have a 0 in every row.

Generalization of the node – r-order node:

1

2

3

f

f

n

n

f

f

f

f

f

f

f

f

f

f

f

""""""""

""""""""
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2-nd order 2-node

A node – 0-order node.



In general, to understand that xu is an r-order node, one has to look

at the observations

x1, x2, . . . , xu, xu+1, . . . , xu+r.

On the other hand, a was a node independently of the previous ob-

servations. Could we have something like that as well?

A barrier is a block of observations that contains a (r-order) node

independently of the observations before (and after) it.

—————————————————————————-

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, . . .

The block x6, x7, x8, x9, x10, x11 is a barrier of length 6.

a – barrier of length 1.



Thm (Koloydenko, L.; simplified version)

Assume:

1) for each state l ∈ S

Pl

(
x : fl(x)max

j
{pjl} > max

i,i 6=l
{fi(x)max

j
{pji}}

)
> 0.

2) the supports of fl have non-empty intersection;

Then there exists:

1) a set X = X1× · · · × XM such that every vector (x1, . . . , xM) ∈ X is

a barrier with xM−r being the corresponding r-order l-node;

2) a M-tuple of states (y1, . . . , yM) ∈ SM such that yM−r = l and

P
(
(X1, . . . , XM) ∈ X

∣∣∣Y1 = y1, . . . , YM = yM

)
> 0

P(Y1 = y1, . . . , YM = yM) > 0.

—————————————————————————-

Thm. applies for a large class of HMM’s. Essentially generalizes the

earlier results by Caliebe and Rösler (2002).



1) there is a positive probability that the process X generates a barrier

from X in observations (observable);

2) there is a positive probability that the process X generates a

barrier from X in observations and the underlying MC Y generates

(y1, . . . , yM) at the same time .

By ergodic argument that means:

1) almost every realization of X has infinitely many barriers (and,

hence, nodes);

2) almost every realization of X has infinitely many barriers generated

by the block (y1, . . . , yM).

X : −−−−−−−−∗−−−−−−−−−∗−−−−−−−−∗−−−−−
Y : −−− ∗ −−−−−−−−−− ∗ −−−−−−−−−−−∗−−−−−

τ



By 1), for almost every realization we can define piecewise infinite

alignment. Formally, we have a map (coding)

v : R∞ 7→ S∞.

The process V := v(X) is called the alignment process. So

V1, V2, . . . = v(X1, X2, . . .)

From 2), it follows:

a) the process X is regenerative with respect to τ ;

b) the process V is regenerative with respect to τ ;

c)the process (X, V ) is regenerative with respect to τ ;

V : −−−∗−−−− ∗ −−−−−−−− ∗ −−−−−−−−− ∗ −−−−−
X : −−−∗−−−−∗−−−−−−−−−∗−−−−−−−−−∗−−−−−
Y : −−−∗−−−−−−−−− ∗ −−−−−−−−−−−−−∗−−−−−

τi τi+1



V is not stationary, but can be easily stationarized by embedding into

double-sided process. Then V as well as (X, V ) ergodic.

Regenerativity (ergodicity) immediately gives SLLN type of theorems.

——————————————

Example: States of Y : 1 2. Observations x1, . . . , xn. Subsamples

based on Viterbi alignment Pn
l , l ∈ S.

X : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−−−−−−−−−−−−−−−−−−−−−−
v : 1 2 2 1 2 1 2 2 2 1

The subsamples (empirical measures) are

x1 x4 x6 x10 P10
1

x2 x3 x5 x7 x8 x9 P10
2



Using the regenerativity (or ergodicity) of (X, V ), it easily follows that

there exists probability measures Ql such that a.s.

Pn
l ⇒ Ql, ∀l

Important: Ql might be very different from Pl

This difference is not taken into account in Viterbi training.

This difference is taken into account in adjusted Viterbi training.


