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Longest common subsequence

X – alphabet (finite set)

X, Y ∈ Xn two sequences of length n

X = X1, . . . , Xn, Y := Y1, . . . , Yn.

Common subsequence of X and Y is any subsequence of X that is

also contained in Y .

Formally: Xi1, . . . , Xik
is a subsequence of X, if i1 < i2 < · · · < ik;

Xi1, . . . , Xik
is a common subsequence of X and Y , if it is a the same

time a subsequence of Y , i.e. there exists j1 < · · · < jk such that

Xi1 = Yj1, Xi2 = Yj2 , . . . , Xik
= Yjk

.

——–

X =ATAGCGT, Y =CAACATG. A common subsequence of X and

Y is AACG, because it is a subsequence of X
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The longest common subsequence of X and Y is any common sub-

sequence of X and Y that is of maximal length.

——–

X =ATAGCGT, Y =CAACATG AT – a common subsequence;

X =ATAGCGT, Y =CAACATG AACG – LCS.

LCS is often not unique:

X =ATAGCGT, Y =CAACATG AACT – LCS.

——–

The length of LCS, denoted by Ln is used to measure the "related-

ness" or "closeness" of X and Y . The bigger Ln (relative to n), the

more closed X and Y presumably are.

——–

In our example, n = 7, L7 = 4. Thus

Ln

n
=

4

7
.

Is it big enough?



Applications

Computational molecular biology:

- comparing DNA sequences, X = {A, T, G, C}

- comparing protein alignments, |X | = 20 amino acids.

Linguistics: X - (usual) alphabet.

The easiest case to study: X = {0,1}.



Common subsequence can be represented by an alignment with gaps

(alignment with insertions and deletions (indels)). Like

A T A G C G T

C A A C A T G

A T A G C G T

C A A C A T G

Another example:

f a n t h a s t i c

f n t a s t i q u e

f a n t h a s t i c

f n t a s t i q u e

Hamming score would be 1, whilst L10 = 7, LCS is fntasti.

A more general sequence comparison scheme: every alignment (with

gaps and mismatch) has a score that can be calculated pair-wise,

where: 1) matching with gap costs −δ, 2) mismatching costs −µ, 3)

match rewords 1.

One seeks for optimal alignment achieving the highest score.

LCS – a special case of optimal alignment with δ = 0, µ > 0.



Back to LCS.

To distinguish the related sequences from unrelated ones (using LCS),

it is important to know about the LCS for unrelated sequences.

Stochastic model: X1, . . . , Xn and Y1, . . . , Yn are the first elements

of ergodic processes. Unrelated – the processes are independent.

Then Ln – random variable. (Asymptotic) properties of Ln? .

LCS - superadditive:

X1 · · · Xn Xn+1 · · · Xn+m

Y1 · · · Yn Yn+1 · · · Yn+m
︸ ︷︷ ︸

≥
X1 · · · Xn

Y1 · · · Yn
︸ ︷︷ ︸

+
Xn+1 · · · Xn+m

Yn+1 · · · Yn+m
︸ ︷︷ ︸

L(1 . . . n + m) ≥ L(1 . . . n) + L(n + 1 . . . n + m)

Kingman’s subadditve ergodic thm: ∃ constant γ such that

Ln

n
→ γ a.s and in L1.



Independent Bernoulli random variables

Consider the easiest case: X = X1, . . . , Xn and Y = Y1, . . . , Yn are i.i.d.

Bernoulli with parameter θ and independent of each other.

Mean

γ (Chvatal-Sankof constant) is unknown even for this case. If θ = 0.5

then γ ≈ 0.81. If θ 6= 0.5 then γ is (presumably) bigger.

Variance

Chvatal-Sankof conjecture (1975): if θ = 0.5, then Var(Ln) = o(n
2
3).

Steele (1986): Var(Ln) ≤ P(X1 6= Y1)n.

Waterman’s conjecture (1994): Steele’s bound’s cannot be improved:

Var(Ln) ≍ n i.e. ∃C > c > 0 : cn ≤ Var(Ln) ≤ Cn.



Independent Bernoulli random variables: variance study

Aim: To prove Waterman’s conjecture (iid Bernoulli case).

Conditioning on Y : Suppose the outcome of Y is fixed. So, X1, . . . , Xn

is i.i.d Bernoulli, Y1, . . . , Yn is non-random.

1) Y is unicolor. Then Ln =
∑

Xi, Var(Ln) = θ(1 − θ)n: linear.

X : 0 1 1 1 0 1 0 0 1 0
Y : 1 1 1 1 1 1 1 1 1 1

2) Y1, . . . Yn
2

one color, Yn
2+1, . . . Yn another – variance linear.

X : 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1
Y : 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3) the first 1
4-th of Y one color, the second another color, and so on.

Variance linear

Y : −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



In 1) – 3), the variance was driven by the long unicolor blocks pro-
portional to n. What if Y is non-random but as "mixed" as possible?

4) Y is periodic.

X : 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0
Y : 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Thm (Matzinger, Durringer, L.) If Y is non-random and periodic and
X iid Bernoulli with θ = 0.5, then Var(Ln) ≍ n.
—————–
Relax the assumption that Y is non-random. Let X and Y both be
iid Bernoulli with very low entropy, so θ is very small (for both).

X : 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
Y : 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

The optimal alignment typically will align mostly 0’s:

X : 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
Y : 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

Thm (Matzinger, L.) Let X and Y be independent iid Bernoulli with

parameter θ. If θ is small enough, then Var(Ln) ≍ n.

—————–



Modeling the relatedness

X and Y have a a common ancestor process: Z1, Z2, . . . that is X -

valued iid process.

The ancestor process will mutate independently: there are iid random

mappings f1, f2, . . . X → X giving the mutated process f1(Z1), f2(Z2), . . ..

Finally, some elements of will be deleted via deletion process D1, D2, . . .

that is iid Bernoulli. The elements corresponding to 1 remain. These

elements are X.

The sequence Y is modeled from the same ancestor process via inde-

pendent mutations and deletions.



Z : Z1 Z2 Z3 Z4 Z5 Z6 common ancestor

f(Z) : f1(Z1) f2(Z2) f3(Z3) f4(Z4) f5(Z5) f6(Z6) X mutations
Dx : 0 1 1 0 0 1 X deletions
X : X1 X2 X3

h(Z) : h1(Z1) h2(Z2) h3(Z3) h4(Z4) h5(Z5) h6(Z6) Y mutations
Dy : 1 1 1 0 1 0 Y deletions
Y : Y1 Y2 Y3 Y4

Both processes are still iid but they are not independent. The process

(X1, Y1), (X2, Y2), . . .

is still ergodic, so by superadditivity

Ln

n
→ γR a.s and in L1.

We call Xi and Yj related if they have the same ancestor. In the

Example, X2 and Y3 are related.

Aim: To distinguish the related case from unrelated one. One way is

to look at Ln, it is worth of looking at all optimal alignments.



2D representation of an alignment

Let X =ATACCGT, Y =CAACATG.

There are 2 LCS: AACG and AACT.

To AACG corresponds 2 alignments:

A T A C C G T

C A A C A T G

A T A C C G T

C A A C A T G

Which can be represented by the following plots:

G ∗
T

A

C ∗
A ∗
A ∗
C

A T A C C G T

G ∗
T

A

C ∗
A ∗
A ∗
C

A T A C C G T



The alignments corresponding to AACT are

G

T ∗
A

C ∗
A ∗
A ∗
C

A T A C C G T

G

T ∗
A

C ∗
A ∗
A ∗
C

A T A C C G T

Putting them all in one plot, we can see the uniqueness part as well
as the lowest and highest alignment:

G ∗
T ∗
A

C ∗ ∗
A ∗
A ∗
C

A T A C C G T

It is easy to see that the lowest and highest alignment always exists;

they are possible to find by dynamic programming.

To be more illustrative (for big n), we join the dots by a line to

get an alignment graph.
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X and Y are independent, n = 1000. Right: zoomsection.
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X and Y are related, n = 1000. Right: zoomsection (red dots: related pairs, equal

to ancestor.)
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From the pictures, one can clearly see the difference between the re-

lated and unrelated case. How to measure it? Some first ideas:

– Maximal vertical (horizontal) distance

– The length of the maximal non-uniqueness stretch

– Maximal Hausdorff’s distance

· · ·

——————————–

Thm (Matzinger, L.) Assume X and Y are related. Let Vn be the

maximal vertical distance between the highest and lowest alignment.

Under some assumptions

P
(

Vn > 2C lnn
)

≤ Dn−1,

where C and D are constants.


