On the variance an uniqueness of longest common subsequence

J. Lember

University of Tartu, Estonia

with

H. Matzinger

and

A. Vollmer

University of Bielefeld, Germany

Longest common subsequence

 \mathcal{X} - alphabet (finite set) $X, Y \in \mathcal{X}^n$ two sequences of length n

$$X = X_1, \ldots, X_n, \quad Y := Y_1, \ldots, Y_n.$$

Common subsequence of X and Y is any subsequence of X that is also contained in Y.

Formally: X_{i_1}, \ldots, X_{i_k} is a subsequence of X, if $i_1 < i_2 < \cdots < i_k$; X_{i_1}, \ldots, X_{i_k} is a common subsequence of X and Y, if it is a the same time a subsequence of Y, i.e. there exists $j_1 < \cdots < j_k$ such that

$$X_{i_1} = Y_{j_1}, \quad X_{i_2} = Y_{j_2}, \dots, \quad X_{i_k} = Y_{j_k}.$$

X = ATAGCGT, Y = CAACATG. A common subsequence of X and Y is AACG, because it is a subsequence of X

Longest common subsequence

 \mathcal{X} - alphabet (finite set) $X, Y \in \mathcal{X}^n$ two sequences of length n

$$X = X_1, \ldots, X_n, \quad Y := Y_1, \ldots, Y_n.$$

Common subsequence of X and Y is any subsequence of X that is also contained in Y.

Formally: X_{i_1}, \ldots, X_{i_k} is a subsequence of X, if $i_1 < i_2 < \cdots < i_k$; X_{i_1}, \ldots, X_{i_k} is a common subsequence of X and Y, if it is a the same time a subsequence of Y, i.e. there exists $j_1 < \cdots < j_k$ such that

$$X_{i_1} = Y_{j_1}, \quad X_{i_2} = Y_{j_2}, \dots, \quad X_{i_k} = Y_{j_k}.$$

 $X = \mathsf{ATAGCGT}, Y = \mathsf{CAACATG}.$ A common subsequence of X and Y is AACG , because it is a subsequence of X and Y.

Longest common subsequence

 \mathcal{X} - alphabet (finite set) $X, Y \in \mathcal{X}^n$ two sequences of length n

$$X = X_1, \ldots, X_n, \quad Y := Y_1, \ldots, Y_n.$$

Common subsequence of X and Y is any subsequence of X that is also contained in Y.

Formally: X_{i_1}, \ldots, X_{i_k} is a subsequence of X, if $i_1 < i_2 < \cdots < i_k$; X_{i_1}, \ldots, X_{i_k} is a common subsequence of X and Y, if it is a the same time a subsequence of Y, i.e. there exists $j_1 < \cdots < j_k$ such that

$$X_{i_1} = Y_{j_1}, \quad X_{i_2} = Y_{j_2}, \dots, \quad X_{i_k} = Y_{j_k}.$$

 $X = \mathsf{ATAGCGT}, Y = \mathsf{CAACATG}$. A common subsequence of X and Y is AACG , because it is a subsequence of X and Y.

The longest common subsequence of X and Y is any common subsequence of X and Y that is of maximal length.

X = ATAGCGT, Y = CAACATG AT – a common subsequence; X = ATAGCGT, Y = CAACATG AACG – LCS. LCS is often not unique: X = ATAGCGT, Y = CAACATG AACT – LCS.

The length of LCS, denoted by L_n is used to measure the "relatedness" or "closeness" of X and Y. The bigger L_n (relative to n), the more closed X and Y presumably are.

In our example, n = 7, $L_7 = 4$. Thus

$$\frac{L_n}{n} = \frac{4}{7}.$$

Is it big enough?

Applications

Computational molecular biology:

- comparing DNA sequences, $\mathcal{X} = \{A, T, G, C\}$
- comparing protein alignments, $|\mathcal{X}| = 20$ amino acids.

Linguistics: X - (usual) alphabet.

The easiest case to study: $\mathcal{X} = \{0, 1\}$.

Common subsequence can be represented by an alignment with gaps (alignment with insertions and deletions (indels)). Like

Another example:

Hamming score would be 1, whilst $L_{10} = 7$, LCS is *fntasti*.

A more general sequence comparison scheme: every alignment (with gaps and mismatch) has a score that can be calculated pair-wise, where: 1) matching with gap costs $-\delta$, 2) mismatching costs $-\mu$, 3) match rewords 1.

One seeks for optimal alignment achieving the highest score.

LCS – a special case of optimal alignment with $\delta = 0$, $\mu > 0$.

Back to LCS.

To distinguish the related sequences from unrelated ones (using LCS), it is important to know about the LCS for unrelated sequences.

Stochastic model: X_1, \ldots, X_n and Y_1, \ldots, Y_n are the first elements of ergodic processes. Unrelated – the processes are independent.

Then L_n – random variable. (Asymptotic) properties of L_n ?.

LCS - superadditive:

$$\underbrace{\begin{array}{ccccc} X_1 & \cdots & X_n & X_{n+1} & \cdots & X_{n+m} \\ Y_1 & \cdots & Y_n & Y_{n+1} & \cdots & Y_{n+m} \end{array}}_{L(1\dots n+m)} \geq \underbrace{\begin{array}{ccccc} X_1 & \cdots & X_n \\ Y_1 & \cdots & Y_n \end{array}}_{L(1\dots n)} + \underbrace{\begin{array}{cccccc} X_{n+1} & \cdots & X_{n+m} \\ Y_{n+1} & \cdots & Y_{n+m} \end{array}}_{L(1\dots n+m)}$$

Kingman's subadditve ergodic thm: \exists constant γ such that

$$\frac{L_n}{n} \to \gamma$$
 a.s and in L_1 .

Independent Bernoulli random variables

Consider the easiest case: $X = X_1, \ldots, X_n$ and $Y = Y_1, \ldots, Y_n$ are i.i.d. Bernoulli with parameter θ and independent of each other.

Mean

 γ (Chvatal-Sankof constant) is unknown even for this case. If $\theta = 0.5$ then $\gamma \approx 0.81$. If $\theta \neq 0.5$ then γ is (presumably) bigger.

Variance

Chvatal-Sankof conjecture (1975): if $\theta = 0.5$, then $Var(L_n) = o(n^{\frac{2}{3}})$.

Steele (1986): $Var(L_n) \le P(X_1 \ne Y_1)n$.

Waterman's conjecture (1994): Steele's bound's cannot be improved: Var $(L_n) \asymp n$ i.e. $\exists C > c > 0$: $cn \leq Var(L_n) \leq Cn$.

Independent Bernoulli random variables: variance study

Aim: To prove Waterman's conjecture (iid Bernoulli case).

Conditioning on Y: Suppose the outcome of Y is fixed. So, X_1, \ldots, X_n is i.i.d Bernoulli, Y_1, \ldots, Y_n is non-random.

Y:-----

In 1) – 3), the variance was driven by the long unicolor blocks proportional to n. What if Y is non-random but as "mixed" as possible?

4) Y is periodic.

Thm (Matzinger, Durringer, L.) If Y is non-random and periodic and X iid Bernoulli with $\theta = 0.5$, then $Var(L_n) \simeq n$.

Relax the assumption that Y is non-random. Let X and Y both be iid Bernoulli with very low entropy, so θ is very small (for both).

The optimal alignment typically will align mostly 0's:

Thm (Matzinger, L.) Let X and Y be independent iid Bernoulli with parameter θ . If θ is small enough, then $Var(L_n) \simeq n$.

Modeling the relatedness

X and Y have a a common ancestor process: Z_1, Z_2, \ldots that is \mathcal{X} -valued iid process.

The ancestor process will mutate independently: there are iid random mappings $f_1, f_2, \ldots \mathcal{X} \to \mathcal{X}$ giving the mutated process $f_1(Z_1), f_2(Z_2), \ldots$

Finally, some elements of will be deleted via deletion process D_1, D_2, \ldots that is iid Bernoulli. The elements corresponding to 1 remain. These elements are X.

The sequence Y is modeled from the same ancestor process via independent mutations and deletions.

Z:	Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	common ancestor	
f(Z):	$f_1(Z_1)$	$f_2(Z_2)$	$f_{3}(Z_{3})$	$f_4(Z_4)$	$f_5(Z_5)$	$f_{6}(Z_{6})$	X mutations	
D^x :	0	1	1	0	0	1	X deletions	
X:		X_1	X_2			X3		
		-				-		
h(Z):	$h_1(Z_1)$	$h_2(Z_2)$	$h_{3}(Z_{3})$	$h_4(Z_4)$	$h_5(Z_5)$	$h_{6}(Z_{6})$	Y mutations	
D^y :	1	1	1	0	1	0	Y deletions	
Y:	Y_1	<i>Y</i> ₂	Y_3		Y_4			

Both processes are still iid but they are not independent. The process

 $(X_1, Y_1), (X_2, Y_2), \ldots$

is still ergodic, so by superadditivity

$$\frac{L_n}{n} \to \gamma_R \quad \text{a.s and in } L_1.$$

We call X_i and Y_j related if they have the same ancestor. In the Example, X_2 and Y_3 are related.

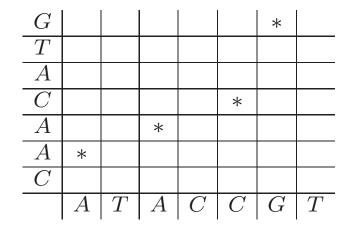
Aim: To distinguish the related case from unrelated one. One way is to look at L_n , it is worth of looking at all optimal alignments.

2D representation of an alignment

```
Let X = ATACCGT, Y = CAACATG.
There are 2 LCS: AACG and AACT.
```

To AACG corresponds 2 alignments:

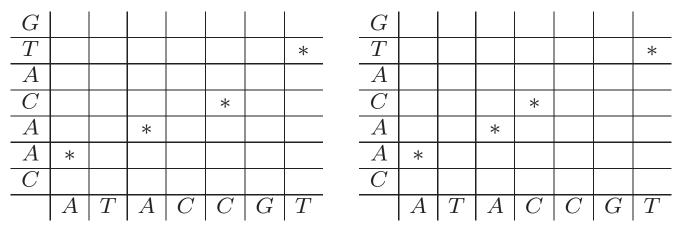
Which can be represented by the following plots:



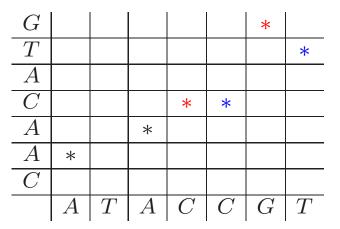
G						*	
T							
A							
C				*			
A			*				
A	*						
C							
	A	T	A	C	C	G	T

1

The alignments corresponding to AACT are

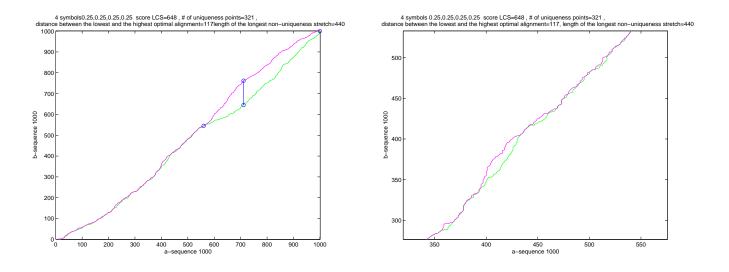


Putting them all in one plot, we can see the uniqueness part as well as the lowest and highest alignment:

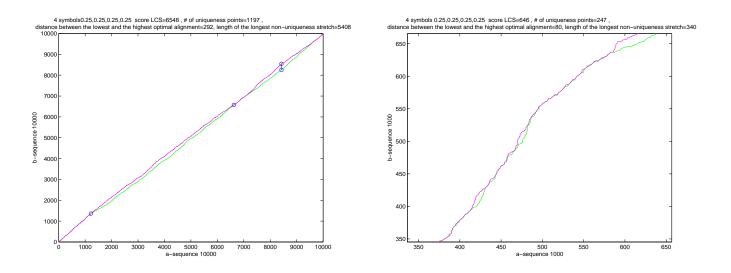


It is easy to see that the lowest and highest alignment always exists; they are possible to find by dynamic programming.

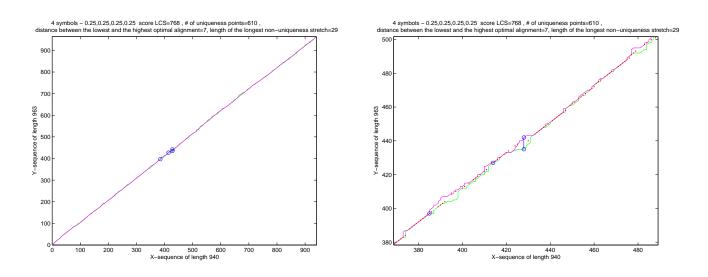
To be more illustrative (for big n), we join the dots by a line to get an alignment graph.



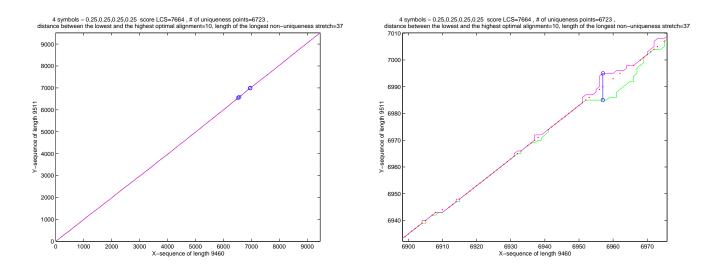
X and Y are independent, n = 1000. Right: zoomsection.



X and Y are independent, n = 10000. Right: zoomsection.



X and Y are related, n = 1000. Right: zoomsection (red dots: related pairs, equal to ancestor.)



X and Y are related, n = 10000. Right: zoomsection.

From the pictures, one can clearly see the difference between the related and unrelated case. How to measure it? Some first ideas:

- Maximal vertical (horizontal) distance

- The length of the maximal non-uniqueness stretch

- Maximal Hausdorff's distance

Thm (Matzinger, L.) Assume X and Y are related. Let V_n be the maximal vertical distance between the highest and lowest alignment. Under some assumptions

$$P(V_n > 2C \ln n) \le Dn^{-1},$$

where C and D are constants.