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Introduction

We consider a general scheme of parameter estimation.
Our task is to estimate true value of a parameter.

Let us denote it θ0. We suppose to know the set, say Θ, of all
possible values of this parameter and a parameterized family of
probability measures PΘ = {µθ | θ ∈ Θ} defined on a metric
space Y .
In any time t ∈ N we have known an observed data Zt ∈ Zt .

Petr Lachout, Charles University in Prague

Estimation process, consistency



Introduction General result Linear regression

Typically, we observe a sequence of data X1,X2,X3, . . . .
belonging to a metric space X .
We group observations available at time t ∈ N in a vector
Zt = (X1,X2, . . . ,Xkt ) and Zt = X kt .
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From observed data we construct probability measure
µt(• |Zt) on Y . These measures will play role of estimators for
the “true” probability measure µθ0 .
The true parameter θ0 is estimated by an εt-estimator θ̂t ∈ Θ,
i.e. fulfilling for all θ ∈ Θ

L(µt(• |Zt) ; θ̂t) < L(µt(• |Zt) ; θ) + εt , (1)

where L is a given ”distance” between measures and
parameters.
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For our purposes we need a bit stronger notion of the standard
weak convergence of probability measures. Therefore we have
to introduce a convenient notation.
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Definition
Let µ, µn, n ∈ N be Borel probability measures on a metric
space Y and F ⊂ {f : Y → R | f is measurable}. We will say
that µn converge F -weakly to µ iff∫
Y

f (y)µn(dy)−−−−→
n→+∞

∫
Y

f (y)µ(dy) for all bounded continuous

function f : Y → R;∫
Y

f (y)µn(dy)−−−−→
n→+∞

∫
Y

f (y)µ(dy) for all f ∈ F .

We will denote the convergence by

µn
F−w−−−−→

n→+∞
µ.
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For example, the strong law of large numbers for i.i.d. real

random variables can be rewritten as νn
H−w−−−−→

n→+∞
ν, where νn is

the empirical measure defined from observations till time n, ν
is common distribution of the observations and
H = {h : x ∈ R → |x |}.

Consequently, we have∫
R

f (y)νn(dy)−−−−→
n→+∞

∫
R

f (y)ν(dy)

for every continuous function f : R → R fulfilling
|f (y)| ≤ A + B|y | for all y ∈ R and convenient A,B ∈ R.
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General result

Now, let us formalize the schema in a list of assumptions.

Assumption A1

Spaces Y , Φ, Zt , t ∈ N are metric spaces. The set Θ ⊂ Φ is
nonempty and F ⊂ {f : Y → R | f is measurable}.
(The set F is allowed to be empty.)

Assumption A2

εt : Ω → R++ for any t ∈ N and ε̄ = lim sup
t→+∞

εt < +∞.

Assumption A3

For any θ ∈ Θ, µθ is a Borel probability measure on Y .
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Assumption A4

For any t ∈ N, we observe Zt : Ω → Zt .

Assumption A5

For any t ∈ N, zt ∈ Zt , µt(• | zt) is a Borel probability
measure on Y .
We denote Pemp = {µt(• | zt) | zt ∈ Zt , t ∈ N}.
Assumption A6

The function L : (Pemp ∪ PΘ)×Θ → R is non-negative.

Assumption A7

θ0 is a minimizer of the function L(µθ0 ; •). In other words
θ0 ∈ argmin {L(µθ0 ; θ) | θ ∈ Θ}.
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Assumption A8

Whenever ∀n ∈ N νn ∈ Pemp and νn
F−w−−−−→

n→+∞
µθ0 , then there is

a sequence θ̃n ∈ Θ, n ∈ N such that

lim
n→+∞

θ̃n = θ0 and lim
n→+∞

L(νn ; θ̃n) = L(µθ0 ; θ0).
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Assumption A9

There is a compact set K ⊂ Θ such that

1. lim inf
n→+∞

L(νn ; θn) ≥ L(µθ0 ; θ) whenever

∀n ∈ N νn ∈ Pemp and νn
F−w−−−−→

n→+∞
µθ0 ,

∀n ∈ N θn ∈ Θ, θn−−−−→
n→+∞

θ ∈ K .

2. For any sequence of probability measures νn ∈ Pemp,

νn
F−w−−−−→

n→+∞
µθ0 and any open set G ⊃ K we have

lim inf
n→+∞

inf
θ∈Θ\G

L(νn ; θ) > L(µθ0 ; θ0) + ε̄.
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These assumptions ensures existence of the estimator and also
that it is a consistent estimator of the true parameter.

Lemma
Let Assumptions A1–A6 be fulfilled. Then an εt-estimator θ̂t

fulfilling (1) exists for any t ∈ N.

Proof.
Let t ∈ N. Accordingly to Assumptions A6 and A2,

0 ≤ inf
θ∈Θ

L(µt(• |Zt) ; θ) < +∞ and εt > 0.

Hence, a θ̂t fulfilling (1) always exists.
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We have to recall a few from topological terminology.

Definition
For a sequence ηn, n ∈ N in a metric space W , we denote the
set of its cluster points by Ls (ηn , n ∈ N), i.e.

Ls (ηn , n ∈ N) =

{
ψ ∈ W

∣∣∣∣ ∃ subsequence s.t. lim
n→+∞

ηkn = ψ

}
.

Definition
We say that a sequence ηn, t ∈ N in a metric space W is
compact if each its subsequence possesses at least one cluster
point.

Petr Lachout, Charles University in Prague

Estimation process, consistency



Introduction General result Linear regression

Compact sequence in metric space possesses an equivalent
description.

Lemma
Let ηn, t ∈ N be a sequence in a metric space W . Then, the
following statements are equivalent:

1. The sequence is compact.

2. There is a compact L ⊂ W such that ηn ∈ L for all t ∈ N.

3. The set {ηn | n ∈ N} ∪ Ls (ηn , n ∈ N) is compact.
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Lemma
Let ηn, n ∈ N be a sequence in a metric space W and K ⊂ W
be a compact. If for every open set G ⊃ K there is an nG ∈ N
such that ηn ∈ G for all n ∈ N, n ≥ nG .
Then the sequence is compact and Ls (ηn , n ∈ N) ⊂ K.
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Theorem
Let Ω0 ⊂ Ω be such that for all ω ∈ Ω0

µt(• |Zt(ω))
F−w−−−−→

n→+∞
µθ0

and Assumptions A1-A9 be fulfilled.
Then θ0 ∈ K and θ̂t exists for any t ∈ N. Further, for all
ω ∈ Ω0 the sequence θ̂t(ω), t ∈ N is compact and

∅ 6= Ls
(
θ̂t(ω) , t ∈ N

)
⊂ {θ ∈ K | L(µθ0 ; θ) ≤ L(µθ0 ; θ0) + ε̄(ω)} . (2)
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Our proof treats any trajectory separately. Therefore, we do
not need measurability of µt(• | zt) with respect to zt ∈ Zt .
Also, the definition of the εt-estimator does not require
measurability. Thus, it can naturally happen that the
estimator is not a random variable.

Petr Lachout, Charles University in Prague

Estimation process, consistency



Introduction General result Linear regression

Linear regression

We suppose to observe couples (Y1,X1), (Y2,X2), . . . , (Yt ,Xt)
connected by a linear regression model

Yi = X>
i β0 + ei ∀ i = 1, 2, . . . , t. (3)

Where Yi : Ω → R, Xi : Ω → Rd are mappings, ei : Ω → R
are unobserved mappings and β0 ∈ Θ ⊂ Rd is deterministic
but unknown parameter.
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As probability measures required in Assumption A5 we will
employ empirical probability measure defined from
observations. Let us define denotation of an empirical
probability measure in a general case. Let W 6= ∅ and
w1,w2, . . . ,wt ∈ W . Then the empirical probability measure is
defined for any A ⊂ W as the relative number of observations
hitting the set A, i.e. by the formula

Et(A |w1,w2, . . . ,wt) =
1

t

t∑
i=1

I[wi ∈ A]. (4)

Let us recall that if W is a metric space then empirical
probability measure restricted to Borel σ-algebra of W is a
Borel probability measure.
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Unknown regression coefficients are estimated by an
εt-M-estimator based on a loss function defined by the formula

L(µ ; β) =

∫
ρ(y − x>β)µ(dy , dx). (5)

Especially, for empirical distribution of observations we receive

L(Et(• | (y1, x1), (y2, x2), . . . , (yt , xt)) ; β) =

=

∫
ρ(y − x>β) Et(dy , dx | (y1, x1), (y2, x2), . . . , (yt , xt))

=
1

t

t∑
i=1

ρ(yi − x>i β).
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An εt-M-estimator is any β̂t ∈ Θ fulfilling for all β ∈ Θ

L(Et(• | (Y1,X1), (Y2,X2), . . . , (Yt ,Xt)) ; β̂t) < (6)

< L(Et(• | (Y1,X1), (Y2,X2), . . . , (Yt ,Xt)) ; β) + εt .
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Now, the studied situation is fully described and we are
proceeding to assumptions. We introduce the following list of
assumptions:

Assumption R1

Θ ⊂ Rd is a closed subset.

Assumption R2

εt > 0 for any t ∈ N and lim
n→+∞

εt = 0.

Assumption R3

There is a Borel measure ν defined on Rd+1 and Ω1 ⊂ Ω such
that prob (Ω1) = 1 and for all ω ∈ Ω1

Et(• | (X1(ω), e1(ω)), (X2(ω), e2(ω)), . . . , (Xt(ω), et(ω)))
w−−−−→

n→+∞
ν .

Petr Lachout, Charles University in Prague

Estimation process, consistency



Introduction General result Linear regression

Assumption R4

For any β ∈ Θ∫
ρ(e) ν (dx , de) ≤

∫
ρ(e + x>(β0 − β)) ν (dx , de) .

Assumption R5

Function ρ : R → R is nonnegative and continuous.
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Assumption R6

There are a function ψ : R+ → R+ which is continuous,
nondecreasing and Ω2 ⊂ Ω, prob (Ω2) = 1 fulfilling:

1. For all t ∈ R ρ(t) ≤ ψ(|t|).
2. For all t > 0

∫
ψ(|e|+ t‖x‖)ν (dx , de) < +∞.

3. For all t > 0, ω ∈ Ω2

1

t

t∑
i=1

ψ(|ei(ω)|+ t‖Xi(ω)‖)−−−−→
n→+∞

∫
ψ(|e|+ t‖x‖)ν (dx , de) .
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Assumption R7

Denoting

Hρ = lim inf
∆→+∞

inf {ρ(t) | |t| > ∆, t ∈ R} ,

M = inf
{
ν

({
(x , e) ∈ Rd+1

∣∣ x>γ 6= 0
}) ∣∣ ‖γ‖ = 1, γ ∈ Rd

}
,

we require M > 0 and a balance

HρM >

∫
ρ(e) ν (dx , de) .
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Lemma
For any ∆ > 0 we have

lim
κ→+∞

inf
‖γ‖=1

ν
({

(x , e)
∣∣ κ ∣∣x>γ∣∣ ≥ ∆ + |e|

})
= M .
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Theorem
If Assumptions R1- R7 are fulfilled.
Then β̂t exists for any t ∈ N and for any β ∈ Θ

L(µβ0 ; β) =

∫
ρ(e + x>(β0 − β)) ν (dx , de) . (7)

Further, for all ω ∈ Ω0 = Ω1 ∩ Ω2 the sequence β̂t(ω), t ∈ N
is compact and

∅ 6= Ls
(
β̂t(ω) , t ∈ N

)
⊂ argmin {L(µθ0 ; θ) | θ ∈ Θ} . (8)
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Proof.
This theorem is a particular case of Theorem 1.
We set X = Y = Rd+1, Φ = Rd .
Further, we set

F =
{
(y , x) 7→ ψ(|y − x>β0|+ t‖x‖) | t > 0

}
.

Hence, it can be shown that Assumptions A1-A9 are fulfilled.
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