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1. Copulas (1)

Let F (y1, y2) be the joint distribution function of random
variables Y1 and Y2 whose distributions F1(y1) = P(Y1 ≤ y1)
and F2(y2) = P(Y2 ≤ y2) are continuous.

Denote the inverse functions by F−1
i (vi) = inf{yi : Fi(yi) ≥ vi},

for i = 1,2.

Sklar’s theorem, e.g., Sklar (1959), states that there exists a
unique copula function C(., .) such that

C(v1, v2) = F (F−1
1 (v1),F−1

2 (v2)), v1, v2 ∈ (0,1).

and connects F (y1, y2) to F1(y1) and F2(y2) via

F (y1, y2) = C(F1(y1),F2(y2)), y1, y2 ∈ (−∞,∞). (1)
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1. Copulas (2)

Consequently
Copulas allow one to model the marginal distributions
and the dependence structure of multivariate random
variable separately.
Furthermore, the functional association between
underlying random variables is not influenced by the
marginal behavior.
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1. Copulas (3): Exemple 1

Example 1
Let Y1 and Y2 be r.v.‘s with joint distribution

F (y1, y2) = [1 + exp(−y1) + exp(−y2)]
−1,

for all y1, y2 ∈ [−∞,∞], i.e. F (y1, y2) is the Gumbel bivariate
logistic distribution. The marginal distributions are

F1(y1) = [1 + exp(−y1)]
−1 and F2(y2) = [1 + exp(−y2)]

−1,

hence

F−1
1 (v1) = − ln

(
1− v1

v1

)
and F−1

2 (v2) = − ln
(

1− v2

v2

)
.

Then, according to Sklar’s theorem

C(v1, v2) = F (F−1
1 (v1),F−1

2 (v2)) =
v1v2

v1 + v2 − v1v2
, v1, v2 ∈ [0,1].
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1. Copulas (4): Example 2

Example 2
If Y1 and Y2 are r.v.’s with joint distribution

F (y1, y2) =


(y1+1)[exp(y2)−1]

y1+2 exp(y2)−1 , if (y1, y2) ∈ [−1,1]× [0,∞];

1− exp(−y2), if (y1, y2) ∈ (1,∞]× [0,∞];
0, elsewhere,

then the marginal distributions

F1(y1) =
y1 + 1

2
, y1 ∈ [−1,1] and F2(y2) = 1−exp(−y2), y2 ≥ 0,

are uniformly distributed on (−1,1) and unit exponentially
distributed, respectively. The inverses are

F−1
1 (v1) = 2v1 − 1 and F−1

2 (v2) = − ln(1− v2).

The related copula is C(v1, v2) = v1v2
v1+v2−v1v2

, i.e. the same as in
Example 1. Is that fact surprising ?
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1. Copulas (5)

Estimation using copulas in regression analysis.

In regression context, each marginal distribution can be
specified to be conditioned on a vector of covariates.

Estimation proceeds by first selecting the appropriate copula
C(., .; θ) depending on its vector of parameters θ (that captures
the degree of associaton between the univariate marginals)
and marginal distributions F1(y1|x1, β1) and F2(y2|x2, β2) where
x1 and x2 are covariates, and β1 and β2 are unknown
parameters (x1 and x2 need not be different sets of covariates).

Then standard maximum likelihood techniques are applied to
the joint distribution

F (y1, y2|x1, x2, β1, β2; θ) = C(F1(y1|x1, β1)),F2(y2|x2, β2); θ).
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1. Gaussian copula (6)

Let Φ2(., .; ρ) be the distribution function of the bivariate normal
random vector with mens zero, variances 1 and off-diagonal
elements of the 2× 2 covariance matrix R equal to ρ ∈ (−1,1).
Then the Gaussian copula is defined by

C(v1, v2; ρ) = Φ2(Φ
−1(v1),Φ

−1(v2); ρ), v1, v2 ∈ (0,1), (2)

where Φ(.) is the distribution function of a standard normal
random variable. By Sklar’s theorem, for any two marginal
distribution functions F1(.) and F2(.), the joint distribution

F (y1, y2) = C(F1(y1),F2(y2); ρ) = Φ2(Φ
−1(F1(y1)),Φ

−1(F2(y2)); ρ)

is a bivariate distribution function whose marginals are F1(y1)
and F2(y2) respectively, and the copula that connects F (y1, y2)
to F1(y1) and F2(y2) is the just the Gaussian copula (2).
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1. Copulas - discrete case (7)

It is possible to derive a unique copula representation for every
continuous multivariate distribution, but the same is not true
for discrete random variables.

Let the distribution of a discrete random variable Y is given by
P(Y = yr ) = pr , r ≥ 1. Then, P(FY (Y ) ≤ u) ≤ u, for u ∈ (0,1]
and the distribution of FY (Y ) is discrete one, given by

P(FY (Y ) = p1 + · · ·+ pk ) = pk , k = 1,2, . . .

and therefore, faraway from the uniform distribution on
(0,1). The problem is, that in the discrete case FY (Y ) is
one-to-many, while F−1

Y (Y ) is many-to-one functions.
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1. Copulas - discrete case (8)

Let us underline that a version of Sklar’s Theorem is offered
recently by Niewiadomska-Bugaj and Kowalczyk (2005) who
find a copula CU(., .) in the case when the marginal
distributions F1(.) and F2(.) can be of any type (continuous,
discrete, mixed) and for which the joint distribution function can
be defined. The intermediate technique used is the introduced
by Szczesny (1991) the so-called Grade transformation,
which is an extension of the probability integral
transformation in continuous case.
The lack of uniqueness of copula presentation for discrete
distributions is a theoretical issue, but it does not inhibit
empirical applications. Researchers use copulas because
they do not know the joint distribution, so whether working with
continuous or discrete data, a pivotal modelling problem is to
choose a copula that adequately captures dependence
structures of the data without sacrificing attractive properties
of marginals.
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1. Copulas - discrete case (9)

For continuous copulas, the dependence parameter θ is usually
converted to measures such a Kendall’s tau (τC) or
Spearman’s rho (ρC) defined by

τC = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 and ρC = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3.

Both measures are bounded on the interval [−1,1] and both do
not depend on the functional forms of the marginal
distributions.
For discrete data, however, Marshall (1996) explains that the
usefulness of both measures is problematic because they
depend (i.e. are not invariant) on the choice of marginal
distributions. Tiit and Kaarik (1996), Joe (1997, Section 3)
and Van Ophem (1999) are examples of studies that focus
explicitly on copula-based models for discrete data.
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1. Copulas - discrete case (10):

Regression estimation.

In discrete case, the copula density c(., .) can be formed by
taking differences

c(F1(y1i),F2(y2i)) = C(F1(y1i),F2(y2i))− C(F1(y1i − 1),F2(y2i))

−C(F1(y1i),F2(y2i − 1)) + C(F1(y1i − 1),F2(y2i − 1)),

for the corresponding copula probability mass function.

The related log-likelihood function is maximized using a
quasi-Newton iterative algorithm requiring only first derivative.
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2. The Gaussian copula regression model (1)

Suppose there are n observations y1, ...,yn, each of dimension
p. The Gaussian copula regression model can be defined as

yij = h−1
ij (zij), j = 1, . . . ,p, zi ∼ Np(0,R) (3)

for i = 1, . . . ,p, see Pitt et al. (2006). In (3), h−1
ij (.) = F−1

ij (Φ(.)),
where Fij(.) are the univariate distribution function of a
continuous or discrete random variable.
Furthermore, we suppose that

Fij(.) = Fj(.; θj , xij), i = 1, . . . ,n,

which means that the marginal distribution of the j−th
component is the same for all cases, and depends of the
vector parameter θj and m × 1 vector of covariates xij .
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2. The Gaussian copula regression model (2)

Typically we might have a marginal generalized linear model for
a given yij .

In the applications, we write θj = (β′j , ψ
′
j )
′, where β′j is m × 1

coefficient vector of xij , and ψj is a vector of all other
parameters in the model associated with the j-th component.

This approach assumes that the marginal distributions of
variables are specified, and uses latent variables to
transform each of marginals to a standard Normal distribution.
The dependence structure between original variables is
created by assuming a multivariate Gaussian distribution
for the latent variables.
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2 The Gaussian copula regression model (3)

The multivariate Probit Model, e.g. Chib and Greenberg
(1998), is a simple example of a Gaussian copula, with
univariate probit regressions as the marginals.

Oakes and Ritz (2000) consider a bivariate Gaussian copula
regression model with identical marginals whose parameters
are known, providing a method for estimating the parameters of
discrete marginals.
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2. The Gaussian copula regression model:
Example 3 (4)

Example 3: Multivariate Capital Asset Pricing Model.

The Capital Asset Pricing Model is used in finance to quantify
the trade-off between the expected risk and return of an
investment. It is known that the market returns exhibit
systematic deviations away from normality, displaying
higher peaks and heavier tails than allowed by the normal
distribution. One may model the multivariate Capital Asset
Pricing Model using the Gaussian copula that has t-distributed
marginals, each having its degrees of freedom parameter. The
model specification is

yij = xiβj + σjeij , i = 1, . . . ,n; j = 1, . . . ,p,

where yij is the excess return of the j-th stock at time i ; xi is the
excess market return at time i .
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2. The Gaussian copula regression model:
Example 3 (5)

The error terms are standardized to have a variance 1:

eij ∼ tνj

√
νj − 2
νj

,

where tνj is a t-distribution with νj > 2 degrees of freedom.
The dependence of the errors ei = (ei1, . . . ,eip), being latent
variables, are modelled through Gaussian copula. The
parameter vector for the j-th equation is θj = (βj , σ

2
j , νj).

In fact, we assume that the marginal density of the j-th
component is a t-distribution with mean µij = x ′ijβj .

Nikolai Kolev e Delhi Paiva



2. The Gaussian copula regression model (6)

Remark 3: Difference between discrete and continuous
models.
Although the Gaussian copula regression model

yij = h−1
ij (zij), j = 1, . . . ,p, zi ∼ Np(0,R)

with h−1
ij (.) = F−1

ij (.), Fij(.) = Fj(.; θj ; xij), i = 1, . . . ,n is the
same for both discrete and continuous components yij ,

the hij and h−1
ij are one-to-one functions for a continuous component yij

but hij is one-to-many functions for a discrete component, with h−1
ij a

many-to-one function.

This difference between the continuous and discrete models
implies that covariates xij are not observed for a discrete
component, but has to be generated in the simulation (if
using a Bayesian approach), see Pitt et al. (2006).
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3. Transition regression models based on copulas
(1)

A number of transition regression models for non-Gaussian
responses have been proposed in literature, see Benjamin et
al. (2003) for a review. Many of these models can be criticized
that their semi-parametric formulations (such as a
quasi-likelihood and generalized estimating equations) do not
lend themself readily to statistical inference and
hypothesis testing.

A likelihood-based methodology is attractive, but serious
problem is the lack of tractable conditional distributions
for non-Gaussian responses for either time series or
longitudinal data.
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3.1. Construction of first order copula transition
models (1)

To establish context, we briefly review the first order regression
model for normal responses. Consider the stationary
time-series {Yt , t = 1,2, . . .} with marginal responses
Yt ∼ N(βTxt , σ

2) for t = 1,2, . . ..

Thus,
βTxt is the marginal mean of Yt ,
xt is a vector of explanatory variables observed at time t ,
β is the corresponding vector of unknown regression
coefficients and
σ2 is the variance of the marginal response.
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3.1. Construction of first order copula transition
models (2)

If the correlation between lagged responses Yt−1 and Yt is
ρ ∈ (−1,1), the transition model has the following specification

Yt |Yt−1 ∼ N(βTxt + ρ[Yt−1 − βTxt−1];σ
2(1− ρ2)). (4)

If the state space is continuous, the joint distribution F (y1, y2)
has two univariate marginal distributions, both equal to the
stationary distribution H(y) with a density h(y). The
transition distribution F2|1(y2|y1) can be computed as

F2|1(yt |yt−1) = P(Yt ≤ yt |Yt−1 = yt−1) =
∂F (yt−1, yt)/∂yt−1

∂H(yt−1)/∂yt−1
.
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3.1. Construction of first order copula transition
models (3)

Although there are many bivariate distributions in literature, few
of these share the property of having the same marginal
distributions. As we noted, the copula model has the
appealing feature of being independent of its marginals.
Applying

f (y1i , y2i ,Θ) = c(F1(y1i , β1),F2(y2i , β2), θ)f1(y1i , β1)f2(y2i , β2),

the corresponding conditional density function f2|1(y2|y1) can
be written using the copula density function as

f2|1(y2|y1) = h(y2)c(H(y1),H(y2)). (5)
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3.1. Construction of first order copula transition
models (4)

If one wishes to obtain a first-order Gaussian autoregressive
model in terms of copula transition model corresponding to

Yt |Yt−1 ∼ N(βTxt + ρ[Yt−1 − βTxt−1];σ
2(1− ρ2)),

he simply needs to substitute in

f2|1(yt |yt−1) = h(yt)c(H(yt−1),H(yt)),

the Gaussian copula density function c(., .; ρ) from

exp
(
−1

2
yT R−1y +

1
2

yT y
)
|R|−

1
2 ,

the standardized marginal distribution H(yt) = Φ[(yt − βTxt)/σ]
and its density h(yt).
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3.1. Construction of first order copula transition
models: Remark (5)

Remark: First-order transition models for discrete
responses.

If h(yt) = P(Yt = yt) represents the marginal distribution of Yt ,
the family of transition distributions of {Yt} can be
characterized by using the discrete bivariate copula and the
discrete distribution function H(yt) =

∑
x≤yt

h(x) as follows:

F2|1(yt |yt−1) =
C(H(yt−1),H(yt))− C(H(yt−1 − 1),H(yt))

h(yt−1)
.
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3.1. Construction of first order copula transition
models: Remark 4 (6)

The corresponding transition density function is

f2|1(yt |yt−1) = P(Yt = yt |Yt−1 = yt−1) = c(yt , yt−1)h(yt−1),

where the probability mass function c(yt , yt−1) should be
calculated using differences

c(yt , yt−1) = C(F1(yt−1),F2(yt))− C(F1(yt−1 − 1),F2(yt))

−C(F1(yt−1),F2(yt − 1)) + C(F1(yt−1 − 1),F2(yt − 1)).

It is possible to extend the transition copula models described
above to higher-order representations by mixture transition
distribution, e.g. Escarela et al. (2006).
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3.2. Semiparametric copula regression models (1)

In economic and financial applications, estimating the
dependence parameter is not the ultimate aim. One is more
interested in estimating or forecasting certain features of
the transition distribution of the time series such as the
conditional moment and conditional quantile functions.
For example, estimating the conditional Value-at-Risk (CVaR)
of portfolio of assets, or equivalently the conditional quantile of
portfolio of assets, has become routine in risk management,
see e.g., Engle and Manganelli (2007).

This can be easily accomplished for copula-based
semiparametric time series models as the transition distribution
of this class is completely characterized by the marginal
distribution and copula function, remind

f2|1(yt |yt−1; θ) = h(yt)c(H(yt−1),H(yt); θ).
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3.2. Semiparametric copula regression models (2)

The marginal distribution characterizes the marginal
behavior such as the fat-tailedness of the time series {Yt},
while the copula function characterizes the temporal
dependence property such as non-linear, asymmetric
dependence of time series.

Let {Yt} be a stationary Markov process of order one. Here we
will assume that the marginal distribution G∗(.) is unspecified,
but the copula function has a parametric form. The function
G∗(.) can be non-parametrically estimated by the empirical
distribution, its rescaled version, i.e. 1

n+1
∑n

t=1 I{Yt ≤ y}, or by
using standard kernel estimators.

If the marginal distribution G∗(.) belongs to a parametric class
of distributions, the corresponding stationary Markov processes
was studied by Joe (1997).
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3.2. Semiparametric copula regression models (3)

Following

f2|1(yt |yt−1; θ) = h(yt)c(H(yt−1),H(yt); θ).

we can write the conditional density of Yt given Yt−1 by

f ∗2|1(Yt |Yt−1; θ) = g∗(Yt)c(G∗(Yt−1),G∗(Yt); θ),

where g∗(.) is the density of the marginal distribution G∗(.)
which is unspecified.
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3.2. Semiparametric copula regression models (4)

One obvious advantage of the copula approach is to
separate the temporal dependence structure from the
marginal behavior. This is practically important when it is
known that the dependence structure and the marginal
properties of the time series are affected by different
exogenous variables, which can be easily modeled using the
copula approach by letting copula parameter θ depending on
x1t , say, and the marginal distribution G∗(.) depending on x2t ,
which may differ from x1t .

A related advantage is that the copula measure of temporal
dependence is invariant to any increasing transformation
of the time series.
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3.2. Semiparametric copula regression models:
Observation (5)

Observation: The transformed process, {Ut : Ut = G∗(Yt)}, is
a stationary parametric Markov process.

Since discrete-time Markov models in econometrics are
typically expressed as regression models, we will provide in the
next two examples such representations for the copula-based
stationary Markov time series models, e.g. Chen and Fan
(2006).
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3.2. Semiparametric copula regression models (6)

Example 5: Semiparametric model generated by the
Gaussian copula.
Let the copula C(., .; ρ) be the Gaussian copula

C(v1, v2; ρ) = Φ2(Φ
−1(v1), Φ

−1(v2); ρ), v1, v2 ∈ (0, 1).

Then the process {Φ−1(G∗(Yt)} is a Gaussian process that can
be represented by

Φ−1(G∗(Yt)) = ρΦ−1(G∗(Yt−1)) + εt , (6)

where εt ∼ N(0,1− ρ2) and εt is independent of Yt−1. We
distinguish the following particular cases of (6):

if G∗(.) is the standard normal distribution, then {Yt} is a
linear AR(1) process;

if G∗(.) is unspecified, then we have the class of
semiparametric model generated by the Gaussian copula;

if G∗(.) is Student’s t , for example, we obtain the first order
Markov process characterized by the Gaussian copula, but with
non-normal marginal distributions.
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3.2. Semiparametric copula regression models (7)

Example 6: Semiparametric regression transformation
models.

These are the models defined by

Λ1,θ1(G
∗(Yt)) = Λ2,θ2(G

∗(Yt−1)) + σθ3(G
∗(Yt−1))et , (7)

where
G∗(.) is the unknown distribution function of Yt ,
Λ1,θ1(.) is a parametric increasing function,
Λ2,θ2(.) and σθ3(.) > 0 are also parametric functions,
et is independent of Yt−1 and {et} are i.i.d. with a
parametric density h(., θ4) having mean zero and variance
1.

It is easy to see that in this case {Yt} in (7) is generated by the
copula density

c(u0, u1, θ) = h
(

Λ1,θ1(u1)− Λ2,θ2(u0)

σθ3(u0); θ4

)
×

∂Λ1,θ1(u1)

∂u1
,

where θ consists of the distinct elements θ1, θ2, θ3 and θ4.
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3.2. Semiparametric copula regression models (8)

The stationary Markov process with the Gaussian copula in
Example 5 and a non-parametric marginal distribution G∗(.)
can be obtained by substituting in

Λ1,θ1(G
∗(Yt)) = Λ2,θ2(G

∗(Yt−1)) + σθ3(G
∗(Yt−1))et ,

Λ1,θ1(u1) = Φ−1(u1), Λ2,θ2(u0) = ρΦ−1(u0), σθ3(u0) =
√

1− ρ2,
h(., θ4) is the standard normal density, and θ = θ1 = θ2.

A generalizations of the model in Example 6 (free of
independence restriction between error term et and Yt−1) is
considered by Chen and Fan (2006) where is shown how
copula-based time-series specifications lead to semiparametric
quantile regression models.
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4. Copula-based longitudinal models (1)

The data under interest are composed by risk class i (town)
and over time t (year). For each observation {it} the responses
consist of total claim amount Sit and claim number Nit . We
also have random errors eit and town characteristics,
described by the vector xit of explanatory variables. Hence, the
data available consist of

{Sit ,Nit ,eit ,xit , t = 1, . . . ,Ti , i = 1, . . . ,n}.

The total claim amount Sit =
∑Nit

k=1 Cit ,k , where
Cit ,k , k = 1,2, . . . are claims resulting from individual losses
from the same distribution. The random variables Nit and
Sit , t = 1, . . . ,Ti , are assumed independent among risk
classes.
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4. Copula-based longitudinal models (2)

Let (Sit ,Nit) be vector of responses from the i-th town and the
t-th time point. We decompose the joint density f (sit ,nit) of
(Sit ,Nit), as

f (sit ,nit) = f1|2(sit |Nit = nit)h(nit).

For the claims number component density h(nit), there are
several candidate distributions that readily accommodate the
effect of the errors eit . The authors usually use compound
Poisson distributions for claims number (including as
special cases the Poisson, negative binomial and
Poisson-Inverse-Gaussian distributions). For the severity
component, f1|2(sit |Nit = nit), the exponential family of
distributions can be applied.
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4. Copula-based longitudinal models (3)

Consider the history of the i-th risk class and let
HN

i,t−1 = {Ni,1, . . . ,Ni,t−1} be claims number history
Hi,t−1 = {Si,1,Ni,1, . . . ,Si,t−1,Ni,t−1} and the claim history up
to time t − 1, t = 1, . . . ,N. To model the development of claims
over time Frees and Wang (2006) assume that:

Claim severity depends on current claims number, as well
as the entire prior history of the claim process, i.e. the
distribution of Sit is a function of Nit and Hi,t−1;
Claim number depends on the prior history of the claims
number process but not the claim severity process. That is,
the distribution of Nit is a function of HN

i,t−1.

Under these assumptions, the joint distribution F (.) of
{Si,1,Ni,1, . . . ,Si,T ,Ni,T} may be written as

F (Si,1, Ni,1, . . . , Si,T , Ni,T ) = {frequency distribution}×{conditional severity distribution}
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4. Copula-based longitudinal models (4)

For a model of aggregate losses described, the interest is in
predicting both the claims number process as well as the
claims amount process.

In a longitudinal data framework, one encounters data from a
cross-section of risk classes with a history of insurance claims
available for each risk class. Further, explanatory variables for
each risk class over time are available to help explain and
predict both the claims number process and claims amount
process.

For the claim severity process one can use:
a generalized linear model for the marginal
distributions (to describe the cross-sectional
characteristics), conditional of frequency;
a parametric copula to model the joint distribution of
claims over time.
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4. Copula-based longitudinal models (5)

Frees and Wang (2005) use a Poisson regression model that is
conditioned on a sequence of latent variables. These latent
variables drive the serial dependencies among claims
numbers and their joint distribution over time and their joint
distribution is represented via t− and Gaussian copulas. The
authors focus on elliptical class of copulas applied for
credibility ratemaking1. By the proposed methodology the
authors develop a unified treatment of both the continuous
claims amount and discrete claims number process. The
procedures developed are employed for automobile liability
claims for a sample of n = 29 towns of Massachusetts
considered annual data from 5 years, 1994-1998, and are
described in Frees and Wang (2005).

1Credibility ratemaking is a technique for predicting future expected
claims of a risk class, given past claims of that and related risk classes, thus
employing longitudinal data set-up.
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4.2. MGH distributions and their copulas (1)

Since copulas are concerned primarily with relationships, one can use any
multivariate distribution to generate a copula. Here we propose the use of
parametric copula corresponding to the multivariate distribution with generalized
hyperbolic margins in a longitudinal data framework.

A subclass of the multivariate generalized hyperbolic (MGH) distributions, namely

the hyperbolic distributions has been introduced via so-called variance-mean mixtures

of Inverse Gaussian distributions. This subclass suffers from not having hyperbolic

distributed marginals, i.e. the subclass is not closed with respect to passing to

marginal distributions. Therefore and because of other theoretical reasons,

Barndorff-Nielsen (1977) extended this class to the family of MGH distributions. Many

different parametric representations of the MGH density functions are provided in

literature. We will use the following one.
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4.2. MGH distributions and their copulas (2)

Definition 1 (MGH distribution). An n-dimensional random
vector Y is said to have a multivariate generalized hyperbolic
(MGH) distribution with location vector µ ∈ <n and scaling
matrix Σ ∈ <n×n, if it has a stochastic representation
Y d

= A′X + µ for some lower triangular matrix A′ ∈ <n×n such
that A′A = Σ is positive definite and X has a density function of
the form (x ∈ <n):

fX(x) =
CnKλ−n/2(α

√
1 + x′x)

(1 + x′x)n/4−λ/2 exp(αβ′x) with Cn =
αn/2(1− ββ′)λ/2

(2π)n/2Kλ(α
√

1− ββ′)
.

(8)
Kν(.) denotes the modified Bessel-function of the third kind
(or MacDonald function) with index ν (e.g., Magnus at al.
(1966), p. 65) and the parameter domain is α > 0, λ ∈ < and
‖ β ‖2< 1 (‖ . ‖2 denotes the Euclidean norm).
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4.2. MGH distributions and their copulas (3)

The family of n-dimensional multivariate generalized hyperbolic
distributions is denoted by MGHn(µ,Σ,w) with w = (λ, α, β).

An important property of the above parameterization of the
MGH density function (8) is its invariance under affine-linear
transformations.

For

λ = n+1
2 we obtain multivariate hyperbolic density

λ = −1/2 the multivariate inverse Gaussian density.

λ = 1 leads to hyperbolically distributed one-dimensional
marginals.
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4.2. MGH distributions and their copulas (4)

An MGH distribution belongs to the class of elliptically
contoured distributions if and only if β = (0, . . . ,0)′. In this
case the density function of Y can be represented as

fY(y) = |Σ|−1/2g[(y− µ)′|Σ|−1(y− µ)], y ∈ <n, (9)

for some density generator function g(.) : (0,∞) → (0,∞). Let
us denote the family of n-dimensional elliptically contoured
distributions2 by En(µ,Σ,g) For a detailed treatment of
elliptically countered distributions see Schmidt (2002, 2006).
Particular cases of (9) are listed in Appendix 1.

2The stochastic representation is Y d
= A′X + µ, where X is a

m-dimensional spherically distributed random vector, A ∈ <m×n with
A′A = Σ, and rank(Σ) = m. According to the stochastic representation of
spherically distributions we can write also Y d

= RmA′U(m)
+ µ, where

A′A = Σ and the random variable Rm ≥ 0 is is independent of the
m-dimensional random vector U(m) is uniformly distributed on the unit sphere
in <m.
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5. A copula based regression model for
unobserved heterogeneity (1)

It is well known that the majority of private health insurance
coverage in the English-speaking world is financed by the
employers. Families with two working spouses might be
confronted with more insurance choices than if only one
spouse is employed. The implication is that spouses must
decide whether to enroll together in the same insurance
plan, or they might acquire separate plans.

The question of empirical interest is whether enrollment in
separate plans and spousal health care use are related, i.e.
if a husband’s and wife’s utilization and their insurance choice
are simultaneously determined.
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5.1. Regression specifications of the model (1)
The wife and husband in family i have a latent disposition to use the health care
services denoted as Y U

i,w and Y U
i,h and the couple’s latent tendency to enroll in

separate plans is denoted by DU
i . The equations underlying these latent variables are

assumed to be linear:

Y U
i,w = xT

i,w βw + ui,w + λv,w vi , (10)

Y U
i,h = xT

i,hβh + ui,h + λv,hvi (11)

DU
i = zT

iα + λu(ui,w + ui,h) + εi , (12)

λu measure how the insurance choice is related to family consumption;
λv,w and λv,h indicate the degree of wifes and husbands contribution to
utlization;
xi,w and xi,h are vectors of explanatory variables that affect the wife’s and
husband’s utilization, respectively;
the vector zT

i consists of variables that affect the insurance choice;
βw , βh and α are coefficient to be estimated;
εi are independently distributed error terms, assumed to be uncorrelated with
(ui,w , ui,h, vi );
quantities ui and vi represent the dependence between spouses’ utilization
and insurance choice and are not observed by the researcher.
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5.1. Regression specifications of the model (2)

The observable utilization variables yi,w and yi,h are recorded as discrete counts of
the visits to certain health care providers. The wife’s (and husband’s) utilization
probability for a particular medical service is assumed to follow a negative binomial
(NB) distribution in the form

f1(yi,w |µi,w ) =
Γ(yi,w + δ)

Γ(δ)Γ(yi,w + 1)

(
δ

λi,w + δ

)δ (
λi,w

λi,w + δ

)yi,w

,

where µi,w = exp(xT
i,w βw ) is the conditional mean.

The variable Di is dichotomous variable indicating whether the husband and wife
in family i are enrolled in separate insurance plans. Couple i ’s decision is assumed
to follow a Probit specification for which the contribution to the unlogged likelihood
function LD is

LD = [Φ(zT
iα)]Di [1 − Φ(zT

iα)]1−Di .
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5.2. Trivariate Frank copula specification (1)

The copula’s facility to accommodate unobserved heterogeneity
is especially important for the data analyzed. Joint estimation
to single equation estimation, (used in regression analysis) is
profitable because variation in utilization and insurance choice,
due to the heterogeneity in (ui,w ,ui,h and vi ), should be
captured by the dependence parameters of appropriate
trivariate copula. The two first marginals F1(.) and F2(.) of the
copula selected are wife’s NB and husband’s NB distributions

f1(yi,w |µi,w ) =
Γ(yi,w + δ)

Γ(δ)Γ(yi,w + 1)

(
δ

λi,w + δ

)δ (
λi,w

λi,w + δ

)yi,w

and f2(yi,h|µi,h) respectively. The third marginal, F3(.) of the
corresponding copula is the Probit model

LD = [Φ(zT
iα)]Di [1− Φ(zT

iα)]1−Di .
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5.2. Trivariate Frank copula specification (2)

Consider the trivariate mixtures of powers representation

C(u, v , w , θ1, θ2) =

∫ ∞

0

∫ ∞

0
B(u|θ2)B(v |θ2)dM2(θ2; θ1)B(w |θ1)dM1(θ1) (13)

In this formulation, the heterogeneity term θ1 affects u, v and
w and the second heterogeneity term θ2 affects u and v .
Representation (11) is symmetric with respect to (u, v) but
not with respect to w .

More precisely, the parameter θ2 measures dependence
between u and v . The parameter θ1 measures the
dependence between u and w (θ12 say) as well as between
v and w , (θ23 say) and the two must be equal (i.e.
θ1 = θ12 = θ23).

Thus, the copula representation (13) accommodates
unobserved heterogeneity in the tree outcomes.
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5.2. Trivariate Frank copula specification (3)

As a particular case we obtain the trivariate Frank copula

CF (u, v , w , θ1, θ2) = −θ1log
{

1 −
(

1 − [1 − c−1
2 (1 − e−θ2u)(1 − e−θ2v )]θ1/θ2

) 1 − e−θ1w

c1

}
,

(14)

where c1 = 1− e−θ1 , c2 = 1− e−θ2 and 0 < θ1 ≤ θ2, e.g. Joe
(1993). The copula given by (14) is an appropriate model for
the unobserved heterogeneity of insurance data considered.
The thrivariate Frank copula appears to be more stable in
dealing with large count values than Clayton copula, for
example (which is also a particular case of (13)), e.g. Zimmer
and Trivedi (2006).
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5.2. Trivariate Frank copula specification (4)

In

CF (u, v , w , θ1, θ2) = −θ1log
{

1 −
(

1 − [1 − c−1
2 (1 − e−θ2u)(1 − e−θ2v )]θ1/θ2

) 1 − e−θ1w

c1

}
,

the dependence parameter θ1 measures the degree to which
the family’s insurance agreement decision is related to its
health care utilization. This relation is decomposed of two
separate effects. First, θ1 includes the indirect selection
effect of being enrolled in different plans. In addition, θ1 also
measures the direct casual effect on utilization of being
enrolled in different plans.
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5.2. Trivariate Frank copula specification (5)

The joint density f (yw , yh,D|xw ,xh, z,uw ,uh, v) of the trivariate
Frank model

CF (u, v , w , θ1, θ2) = −θ1log
{

1 −
(

1 − [1 − c−1
2 (1 − e−θ2u)(1 − e−θ2v )]θ1/θ2

) 1 − e−θ1w

c1

}
,

can be decomposed by Bayes’ rule as follows

f (yw , yh,D|xw ,xh, z,uw ,uh, v) = f12|3(yw , yh|xw ,xh,D, v)×f3(D|z),

where uw and uh no longer appear in the right hand side
because utilization is conditional on D. Therefore, the
distribution of utilization conditional on insurance choice is
expressed as

f12|3(yw , yh|xw ,xh,D, v) =
f (yw , yh,D|xw ,xh, z,uw ,uh, v)

f3(D|z)
(15)
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5.2. Trivariate Frank copula specification (6)

For the data considered and for each of utilization measures
(physician visits (PV), nonphysician visits (NPV) and
emergency room visits (ER), as in regression analysis of the
insurance data), the numerator in

f12|3(yw , yh|xw ,xh,D, v) =
f (yw , yh,D|xw ,xh, z,uw ,uh, v)

f3(D|z)

is estimated by Frank copula

CF (u, v , w , θ1, θ2) = −θ1log
{

1 −
(

1 − [1 − c−1
2 (1 − e−θ2u)(1 − e−θ2v )]θ1/θ2

) 1 − e−θ1w

c1

}
,

and the denominator is estimated by the usual maximum
likelihood method applied to the Probit model. Estimates of
copula parameters for each of utilization measures are
presented in the upper panel of Table 2.
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5.2. Trivariate Frank copula specification (7)

Table 2. Comparision

Physician visits Non physician Emergency
Coeff St. Err. Coeff St. Err. Coeff St. Err.

Trivariate Copula Model
Selection Coefficient (θ1) 0.025 0.014 0.039 0.083 0.098 0.026
Insurance choice Coefficient (θ2) 1.127 0.037 2.273 0.199 1.844 0.252

Log Likelihood -30713.92 -17364.86 -7396.02
Regression Model
Selection Coefficient (λu) 0.023 0.024 -0.052 0.042 0.035 0.056
Coefficient (λv,h) 0.438 0.034 0.885 0.082 0.766 0.154

Log Likelihood -30743.33 -16969.16 -6918.72

Observation: The calculated values of the correponding
log-likelihood functions for the both models are different,
because are based on the different compositions.
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5.2. Trivariate Frank copula specification (8)

Comparing estimates in the upper and lower panels in Table 2, one can conclude that
the quantitative conclusions reveals several similarities by using the regression
analysis and copula-based approach. Both models indicate

significant correlation between spouses’ utilization (measured by θ2 in the
copula model and λv,h in the regression specificationl)

correlation is largest in magnitude for nonphysician utilization (NPV) followed by
ER (emergency visits) physician usage (PV).

It is not surprising that treatment effects are small and relatively widely dispersed.
The only link between D and utilization is trough the dependence parameter θ1,
which estimates are small compared to estimates of θ2.

The interpretation is that the extent in which a family’s insurance agreement is

related to its health care utilization is small relative to the extent to which

spouses’ utilization are related to each other.
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6. Conclusions (1)

In this overview, some alternative copula-based approaches to
regression analysis are presented, with many potential
applications. For each one of the models considered a closed
form expression for the joint distribution can be obtained,
estimable by standard maximum likelihood techniques, and
without the intermediate step of specifying the explicit
distribution of unobserved factors that induce correlation.

The copula approach produces dependence parameters that
provide estimates of association between dependent variables.
Convergence velocity is advantageous to copula approach.
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6. Conclusions (2)

Nevertheless, the characterization of copulas as well as the
choice of the dependence structure are difficult problems. For
example, the choice of the copula does not inform explicitly
which is the type of the dependence structure between
variables involved, compare Examples 1 and 2 again.

As one can see, the primary task is just to choose an
appropriate copula function, where the marginal
distributions are treated as nuisance parameters. But what
is the meaning of “appropriate”? In Fermanian and Scaillet
(2005) are discussed some statistical pitfalls of copula
modelling.

Copula-based regression analysis is profitable, if one
knows the “right” copula, i.e. the “right” dependence
structure, but if not - the procedure have to be repeated again,
and again, until one find the "appropriate"copula.
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6. Conclusions (4)

Theoretically, the copula function is independent of marginals,
and thus, copula is a very restrictive class of dependence
functions.

But, the geometrical behavior of the marginal densities (being
increasing, decreasing, constant, unimodal functions, functions
with a minimum, etc.), have their influence on the
two-dimensional dependent structure, as demonstrated by
Fernadez and Kolev (2007). The conclusions of this study just
show that one should search for a new classes of dependent
functions, in which the type of marginals should be taken
into account.

A suggestion is made in Kolev, Gonçalves and Dimitrov (2007)
to use the so-called "Sibuya‘s dependence function".
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