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Motivating example

Let W be a steady-state waiting time of a M/G/1 queue process
with service time distribution B
µ :=mean service time, ν :=mean interarrival time, µ < ν < ∞

B I (x) :=
∫
x

0
B̄(y)dy/µ, where B̄ = 1− B , is the integrated tail

distribution

Then

W
D
=

N∑
i=1

Yi ,

Yi are IID with distribution B I and independent of N which has a
geometric distribution (the parameter of which can be expressed in
terms of µ and ν).
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The simulation approach

When B is known, P(W > u) can be estimated with excellent
precision regardless how big u is (this is true regardless of the tail
of B).

Thus we have the following (simulation) approach:

data
(1)−→ estimate of B

(2)−→ estimate of P(W > u)

The estimation process (1) can be the cause of a major error! (we
do not know even the right class of distributions)

It would be better to �nd P(W > u) directly as B is of no interest
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Subexponential distributions

Random variable X has a subexponential distribution i�
X : Ω → (0,∞) and

F ∗2(x)

F (x)
→ 2, x →∞,

where F is the cdf of X .

Important members of the subexponential family of distributions
are distributions with a regularly varying tail, lognormal distribution
and Weibull distribution.



The proposed approach

Let B I be subexponential. Then

P(W > u) ∼ EN · B̄ I (u),

where a(x) ∼ b(x) i� lim
x→∞

a(x)/b(x) = 1.

Idea:
µ ≈ µn (LLN)
B(y) ≈ Bn(y) (Glivenko-Cantelli)
thus

B I (x) =
∫
x

0
B̄(y)dy/µ

?
≈
∫
x

0
B̄n(y)dy/µn
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Main result

Let Xn be a sequence of IID positive random variables with a �nite
mean µ and cumulative distribution function B with Bn its
empirical counterpart. Also denote the sample mean with
µn = (X1 + . . . + Xn)/n. Then the following result holds

P

(
sup
x

∣∣∣∣∣
∫
x

0
B̄n(y)dy

µn

−
∫
x

0
B̄(y)dy

µ

∣∣∣∣∣ n−→ 0

)
= 1.



Simulation study (1)

The theorem does not say anything about the rate of convergence.
We studied it for the Pareto (B̄(x) = (1 + x)−α, α > 1) and

Weibull (B̄(x) = e−x
β
, 0 < β < 1) case with the help of

simulations.

Let εn be "half-width of the con�dence interval of B" i.e.
P(sup |B I

n(x)− B I (x)| > εn) = 0.05

How big is the quantile εn? (initial width)
How does the ratio ε2n/εn behave? (rate of convergence)
How big is E(sup |B I

n(x)− B I (x)|)? (average supremum error of
the estimate)
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Simulation study (2)

n α=2 α=3

100 0.2564 0.1769
1000 0.1192 0.0636
10000 0.0470 0.0212
100000 0.0181 0.0068

Table: Half-width of the 95%-con�dence interval for the Pareto case

n β=1/3 β=1/2

100 0.3675 0.2135
1000 0.1463 0.0704
10000 0.0481 0.0224
100000 0.0154 0.0071

Table: Half-width of the 95%-con�dence interval for the Weibull case



Simulation study (3)

n α=2 α=3

100 0.7970 (0.7835;0.8094) 0.7459 (0.7342;0.7570)
1000 0.7593 (0.7424;0.7752) 0.7265 (0.7158;0.7373)
10000 0.7541 (0.7382;0.7706) 0.7092 (0.6995;0.7183)
100000 0.7350 (0.7201;0.7476) 0.7131 (0.7039;0.7222)

Table: Quantile ratio with 95%-con�dence intervals for the Pareto case

n β=1/3 β=1/2

100 0.7688 (0.7612;0.7774) 0.7259 (0.7168;0.7351)
1000 0.7305 (0.7212;0.7399) 0.7046 (0.6952;0.7132)
10000 0.7100 (0.7017;0.7183) 0.7115 (0.7033;0.7195)
100000 0.7128 (0.7039;0.7215) 0.7009 (0.6922;0.7101)

Table: Quantile ratio with 95%-con�dence intervals for the Weibull case



Simulation study (4)

n α=2 α=3

100 0.1319 0.0855
1000 0.0572 0.0306
10000 0.0230 0.0103
100000 0.0087 0.0033

Table: Mean supremum absolute error for the Pareto case

n β=1/3 β=1/2

100 0.1885 0.1027
1000 0.0700 0.0342
10000 0.0236 0.0110
100000 0.0076 0.0035

Table: Mean supremum absolute error for the Weibull case



Onwards...

The asymptotic equivalence P(W > u) ∼ EN · B̄ I (u) remains valid
for the case of a GI/G/1 queue (we need an additional assumption
that also B is subexponential). There is also a dual problem in
insurance risk context (the ultimate ruin probability for a company
dealing with subexponential claims).

Our proposed approach has an obvious shortfall in practice: support
of the approximating distribution is a �nite interval.

The way onwards is clear: sample data must be used to �t a
generalized Pareto distribution to the tail, so that we have an
approximating distribution support of which is (0,∞).
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Thank you for listening!


