mathefattic mathematical mathem

Approximating the Integrated Tail Distribution

Ants Kaasik & Kalev Pärna University of Tartu

VIII Tartu Conference on Multivariate Statistics 26th of June, 2007

Motivating example

martu ülikool

Let W be a steady-state waiting time of a M/G/1 queue process with service time distribution B

 $\mu:=$ mean service time, u:=mean interarrival time, $\mu <
u < \infty$

 $B^{I}(x):=\int_{0}^{x}ar{B}(y)dy/\mu$, where $ar{B}=1-B$, is the integrated tail distribution

Motivating example

martu ülikool

Let W be a steady-state waiting time of a M/G/1 queue process with service time distribution B

 μ :=mean service time, u :=mean interarrival time, $\mu <
u < \infty$

 $B^{I}(x):=\int_{0}^{x}ar{B}(y)dy/\mu$, where $ar{B}=1-B$, is the integrated tail distribution

Then

$$W \stackrel{D}{=} \sum_{i=1}^{N} Y_i,$$

 Y_i are IID with distribution B^I and independent of N which has a geometric distribution (the parameter of which can be expressed in terms of μ and ν).

The simulation approach

When B is known, $\mathbb{P}(W > u)$ can be estimated with excellent precision regardless how big u is (this is true regardless of the tail of B).

The simulation approach TARTU ÜLIKOOL

When B is known, $\mathbb{P}(W > u)$ can be estimated with excellent precision regardless how big u is (this is true regardless of the tail of B).

Thus we have the following (simulation) approach: data $\xrightarrow{(1)}$ estimate of $B \xrightarrow{(2)}$ estimate of $\mathbb{P}(W > u)$

The simulation approach TARTU ÜLIKOOL

When B is known, $\mathbb{P}(W > u)$ can be estimated with excellent precision regardless how big u is (this is true regardless of the tail of B).

Thus we have the following (simulation) approach: data $\xrightarrow{(1)}$ estimate of $B \xrightarrow{(2)}$ estimate of $\mathbb{P}(W > u)$

The estimation process (1) can be the cause of a major error! (we do not know even the right class of distributions)

The simulation approach TARTU ÜLIKOOL

When B is known, $\mathbb{P}(W > u)$ can be estimated with excellent precision regardless how big u is (this is true regardless of the tail of B).

Thus we have the following (simulation) approach: data $\xrightarrow{(1)}$ estimate of $B \xrightarrow{(2)}$ estimate of $\mathbb{P}(W > u)$

The estimation process (1) can be the cause of a major error! (we do not know even the right class of distributions)

It would be better to find $\mathbb{P}(W > u)$ directly as B is of no interest

Subexponential distributions TARTU ÜLIKOOL

Random variable X has a subexponential distribution iff $X:\Omega
ightarrow(0,\infty)$ and

$$\frac{\overline{F^{*2}}(x)}{\overline{F}(x)} \to 2, \quad x \to \infty,$$

where F is the cdf of X.

Important members of the subexponential family of distributions are distributions with a regularly varying tail, lognormal distribution and Weibull distribution.

The proposed approach TARTU ÜLIKOOL

Let B^{I} be subexponential. Then

 $\mathbb{P}(W > u) \sim \mathbb{E}N \cdot \bar{B}^{I}(u),$

where $a(x) \sim b(x)$ iff $\lim_{x \to \infty} a(x)/b(x) = 1$.

The proposed approach TARTU ÜLIKOOL

Let B^{I} be subexponential. Then

$$\mathbb{P}(W > u) \sim \mathbb{E}N \cdot \bar{B}^{I}(u),$$

where $a(x) \sim b(x)$ iff $\lim_{x \to \infty} a(x)/b(x) = 1.$
Idea:
 $\mu \approx \mu_{n}$ (LLN)
 $B(y) \approx B_{n}(y)$ (Glivenko-Cantelli)
thus
 $B^{I}(x) = \int_{0}^{x} \bar{B}(y) dy/\mu \stackrel{?}{\approx} \int_{0}^{x} \bar{B}_{n}(y) dy/\mu_{n}$

Main result

martu ülikool

Let X_n be a sequence of IID positive random variables with a finite mean μ and cumulative distribution function B with B_n its empirical counterpart. Also denote the sample mean with $\mu_n = (X_1 + \ldots + X_n)/n$. Then the following result holds

$$\mathbb{P}\left(\sup_{x}\left|\frac{\int_{0}^{x}\bar{B}_{n}(y)dy}{\mu_{n}}-\frac{\int_{0}^{x}\bar{B}(y)dy}{\mu}\right|\longrightarrow 0\right)=1.$$

Simulation study (1)

martu ülikool

The theorem does not say anything about the rate of convergence. We studied it for the Pareto $(\bar{B}(x) = (1+x)^{-\alpha}, \alpha > 1)$ and Weibull $(\bar{B}(x) = e^{-x^{\beta}}, 0 < \beta < 1)$ case with the help of simulations.

Let ϵ_n be "half-width of the confidence interval of B" i.e. $\mathbb{P}(\sup |B_n^I(x) - B^I(x)| > \epsilon_n) = 0.05$

Simulation study (1)

martu ülikool

The theorem does not say anything about the rate of convergence. We studied it for the Pareto $(\bar{B}(x) = (1+x)^{-\alpha}, \alpha > 1)$ and Weibull $(\bar{B}(x) = e^{-x^{\beta}}, 0 < \beta < 1)$ case with the help of simulations.

Let ϵ_n be "half-width of the confidence interval of B" i.e. $\mathbb{P}(\sup |B_n^I(x) - B^I(x)| > \epsilon_n) = 0.05$

How big is the quantile ϵ_n ? (initial width) How does the ratio ϵ_{2n}/ϵ_n behave? (rate of convergence) How big is $\mathbb{E}(\sup |B_n^l(x) - B^l(x)|)$? (average supremum error of the estimate)

Simulation study (2)

martu ülikool

n	$\alpha = 2$	$\alpha = 3$
100	0.2564	0.1769
1000	0.1192	0.0636
10000	0.0470	0.0212
100000	0.0181	0.0068

 ${
m Table}$: Half-width of the 95%-confidence interval for the Pareto case

n	$\beta = 1/3$	$\beta = 1/2$
100	0.3675	0.2135
1000	0.1463	0.0704
10000	0.0481	0.0224
100000	0.0154	0.0071

Table: Half-width of the 95%-confidence interval for the Weibull case

Simulation study (3)

TARTU ÜLIKOOL

n	$\alpha = 2$	$\alpha = 3$
100	0.7970 (0.7835;0.8094)	0.7459 (0.7342;0.7570)
1000	0.7593 (0.7424;0.7752)	0.7265 (0.7158;0.7373)
10000	0.7541 (0.7382;0.7706)	0.7092 (0.6995;0.7183)
100000	0.7350 (0.7201;0.7476)	0.7131 (0.7039;0.7222)

Table: Quantile ratio with 95%-confidence intervals for the Pareto case

n	$\beta = 1/3$	$\beta = 1/2$
100	0.7688 (0.7612;0.7774)	0.7259 (0.7168;0.7351)
1000	0.7305 (0.7212;0.7399)	0.7046 (0.6952;0.7132)
10000	0.7100 (0.7017;0.7183)	0.7115 (0.7033;0.7195)
100000	0.7128 (0.7039;0.7215)	0.7009 (0.6922;0.7101)

 ${\mathbb T}_{\sf able:}$ Quantile ratio with 95%-confidence intervals for the Weibull case

Simulation study (4)

martu ülikool

n	$\alpha = 2$	$\alpha = 3$
100	0.1319	0.0855
1000	0.0572	0.0306
10000	0.0230	0.0103
100000	0.0087	0.0033

Table: Mean supremum absolute error for the Pareto case

n	$\beta = 1/3$	$\beta = 1/2$
100	0.1885	0.1027
1000	0.0700	0.0342
10000	0.0236	0.0110
100000	0.0076	0.0035

Table: Mean supremum absolute error for the Weibull case

Onwards...

martu ülikool

The asymptotic equivalence $\mathbb{P}(W > u) \sim \mathbb{E}N \cdot \overline{B}^{I}(u)$ remains valid for the case of a GI/G/1 queue (we need an additional assumption that also B is subexponential). There is also a dual problem in insurance risk context (the ultimate ruin probability for a company dealing with subexponential claims).

Onwards...

martu ülikool

The asymptotic equivalence $\mathbb{P}(W > u) \sim \mathbb{E}N \cdot \overline{B}^{I}(u)$ remains valid for the case of a GI/G/1 queue (we need an additional assumption that also B is subexponential). There is also a dual problem in insurance risk context (the ultimate ruin probability for a company dealing with subexponential claims).

Our proposed approach has an obvious shortfall in practice: support of the approximating distribution is a finite interval.

Onwards...

martu ülikool

The asymptotic equivalence $\mathbb{P}(W > u) \sim \mathbb{E}N \cdot \overline{B}^{I}(u)$ remains valid for the case of a GI/G/1 queue (we need an additional assumption that also B is subexponential). There is also a dual problem in insurance risk context (the ultimate ruin probability for a company dealing with subexponential claims).

Our proposed approach has an obvious shortfall in practice: support of the approximating distribution is a finite interval.

The way onwards is clear: sample data must be used to fit a generalized Pareto distribution to the tail, so that we have an approximating distribution support of which is $(0, \infty)$.

Thank you for listening!