Uniformity in directional statistics: data-driven tests and free-lunch learning

Peter Jupp

University of St. Andrews, U.K.

http://www.mcs.st-andrews.ac.uk/~pej/

Directional statistics

Sample space:

circle:
$$S^1 = \{(\cos \theta, \sin \theta)\} = \{\mathbf{x} \in \mathbb{R}^2 : \mathbf{x}^T \mathbf{x} = 1\}$$

sphere:
$$S^2 = \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x}^T \mathbf{x} = 1 \right\}$$

rotation group:
$$SO(3) = \{ \mathbf{X} : \mathbf{X}^T \mathbf{X} = \mathbf{I}_3 \}$$

compact Riemannian manifold M

Uniform distributions

circle: $\theta \sim \pm \theta + c$

sphere: $\mathbf{x} \sim \mathbf{U}\mathbf{x}$ (U orthogonal)

rotation group: $X \sim UXV$ (U, V orthogonal)

compact Riemannian manifold: invariant under isometries

Testing uniformity on the circle

Rayleigh (1919)

For observations $\mathbf{x}_1, \dots, \mathbf{x}_n$ on S^1 ,

$$T_n = n \|\bar{\mathbf{x}}\|^2 = n \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \right\|^2$$

Reject uniformity for large T_n .

Sobolev tests of uniformity

$$\mathbf{t}: M \to \mathbb{E}$$
 (vector space)

For observations x_1, \ldots, x_n on M,

$$T_n = n \left\| \overline{\mathbf{t}} \right\|^2 = \frac{1}{n} \left\| \sum_{i=1}^n \mathbf{t}(x_i) \right\|^2$$

Reject uniformity for large T_n .

 T_n invariant under isometries.

Sobolev tests: construction of t

Giné (1975)

$$E_k = k$$
th eigenspace of Laplacian $(k \ge 1)$ $\mathbf{t}_k : M \to E_k \subset L^2(M)$

Define

$$\mathbf{t}:M \to L^2(M)$$

by

$$x \mapsto \mathbf{t}(x) = \sum_{k=1}^{\infty} a_k \mathbf{t}_k(x)$$

where

$$\sum_{k=1}^{\infty} \frac{a_k^2}{2} \dim E_k < \infty$$

Problem

How to choose a_1, a_2, \ldots ?

few
$$a_k \neq 0 \Rightarrow$$
 (often) simple to calculate all $a_k \neq 0 \Leftrightarrow$ consistent against all alternatives

Embarrassment of choice!

Data-driven tests of uniformity

Ledwina (1994, . . .): data-driven tests of fit on $\mathbb R$

Directional version:

(i)
$$(a_1, a_2, \ldots) = \left(\underbrace{1, 1, \ldots, 1}_{k}, 0, 0, \ldots\right)$$

$$S_k = \sum_{r=1}^k \frac{1}{n} \left\| \sum_{i=1}^n \mathbf{t_r}(x_i) \right\|^2$$
 score test

(ii) choose k using BIC (Schwarz, 1978)

Bayes Information Criterion:

Choose k to maximise

$$B_S(k) = S_k - \left(\sum_{r=1}^k \dim E_r\right) \log n$$

Penalised score test

Penalises higher-dimensional models

Nice properties

Under uniformity, as $n \to \infty$,

$$\hat{k} \quad \stackrel{P}{\to} \quad 1$$

$$S_{\hat{k}} \quad \stackrel{d}{\to} \quad \chi^{2}_{\nu_{1}}$$

Consistent against all alternatives

Example: sphere, S^2

$$S_k = \frac{1}{n} \sum_{i=1}^n \sum_{r=1}^n \sum_{r=1}^k (2r+1) P_r(\mathbf{x}_i^T \mathbf{x}_j)$$

$$B_S(k) = S_k - k(k+2)\log n.$$

Example: sphere, S^2

	n = 5	n = 10	n = 15	n = 20	n = 25
1	8407	9635	9826	9900	9951
2	1060	338	167	97	49
3	357	25	6	3	0
4	92	2	1	0	0
5–10	84	0	0	0	0

Empirical distribution of \hat{k} (10,000 simulations)

Example: sphere, S^2

lpha	n = 10	n = 15	n = 20	n=25	n = 30
0.10	0.132	0.114	0.108	0.110	0.102
	0.114	0.105	0.101	0.102	0.097
0.05	0.078	0.062	0.058	0.058	0.051
	0.056	0.050	0.048	0.048	0.043
0.01	0.043	0.023	0.017	0.014	0.011
	0.000	0.018	0.015	0.010	0.008

$$\begin{split} P(S_{\hat{k}} \geq \chi_{3;\alpha}^2) \text{ and } P(S_{\hat{k}}^* \geq \chi_{3;\alpha}^2) \\ S_{\hat{k}}^* &= \left. \left\{ 1 + \left(1.37 - 0.31 S_{\hat{k}} \right) / n \right\} S_{\hat{k}} \end{split}$$

Red: values in $\alpha \pm 2\sqrt{\alpha(1-\alpha)/10,000}$.

Free-Lunch Learning

"There's no such thing as a free lunch"

In learning theory there is!

- (i) Learn a foreign language; vocabulary $A_1 \cup A_2$ A_1, A_2 involve n_1, n_2 independent associations
- (ii) Forget (partially) $A_1 \cup A_2$
- (iii) Relearn only subset A_2

Then A_1 comes flooding back! 'Free lunch'!

Artificial Neural Network

ANN with weight vector $\mathbf{w} \in \mathbb{R}^n$ sends input \mathbf{x} to output $\mathbf{w}^T \mathbf{x}$:

$$\mathbf{x} \mapsto \mathbf{w}^T \mathbf{x}$$

Teaching ANN to associate inputs $\mathbf{x}_1, \dots, \mathbf{x}_c$ with outputs d_1, \dots, d_c puts weight vector into

$$\{\mathbf w : \mathbf X \mathbf w = \mathbf d\}$$

where

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_c)^T$$
$$\mathbf{d} = (d_1, \dots, d_c)^T$$

Learning, forgetting, relearning

(i) Learn $A_1 \cup A_2$: weight vector is \mathbf{w}_0 $\mathbf{X}_1 \mathbf{w}_0 \ = \ \mathbf{d}_1 \qquad \qquad \mathbf{X}_2 \mathbf{w}_0 \ = \ \mathbf{d}_2$

(ii) Forget (partially) $A_1 \cup A_2$: weight vector is \mathbf{w}_1 squared error on A_1 is $\|\mathbf{X}_1\mathbf{w}_1 - \mathbf{d}_1\|^2$

(iii) Relearn *only* subset A_2 : weight vector is \mathbf{w}_2 (orthogonal projection of \mathbf{w}_1 onto A_2)

squared error on A_1 is $\|\mathbf{X}_1\mathbf{w}_2 - \mathbf{d}_1\|^2$

After forgetting $A_1 \cup A_2$, squared error on A_1 is $\|\mathbf{X}_1\mathbf{w}_1 - \mathbf{d}_1\|^2$

After relearning A_2 ,

squared error on A_1 is $\|\mathbf{X}_1\mathbf{w}_2 - \mathbf{d}_1\|^2$

Amount of FLL is

$$\delta = \|\mathbf{X}_1 \mathbf{w}_1 - \mathbf{d}_1\|^2 - \|\mathbf{X}_1 \mathbf{w}_2 - \mathbf{d}_1\|^2$$

 $\delta > 0 \Leftrightarrow$ relearning A_2 brings w closer to A_1

(a) Synaptic drift

Forgetting $A_1 \cup A_2$ moves weight vector from \mathbf{w}_0 to \mathbf{w}_1 .

$$\mathbf{w}_1 = \mathbf{w}_0 + \mathbf{v}$$

with

 \mathbf{v} isotropic ($\|\mathbf{v}\|^{-1}\mathbf{v}$ uniform)

'Free Lunch' results

If $n_1 + n_2 \le n$, rows of \mathbf{X}_1 are i.i.d. and \mathbf{d}_1 is isotropic then

median
$$(\delta)$$
 > 0

$$E[\delta] = \frac{n_1 n_2}{n^2} E[\|\mathbf{x}\|^2] E[\|\mathbf{v}\|^2]$$

$$P(\delta > 0) \rightarrow 1 \quad n \rightarrow \infty$$

Under drift, free lunch is very probable!

(b) Synaptic fading

Forgetting $A_1 \cup A_2$ moves weight vector from \mathbf{w}_0 to \mathbf{w}_1 .

$$\mathbf{w}_1 = \mathbf{r} \mathbf{w}_0$$

If $n_1 + n_2 \le n$, rows of \mathbf{X}_1 are i.i.d. and \mathbf{d}_1 is isotropic then

$$E[\delta] \leq 0$$

$$P(\delta > 0) \rightarrow 0, \quad n \rightarrow \infty$$

Under fading, free lunch is very unlikely