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Directional statistics

Sample space:
circle: S* = {(cosf,sinf)} = {x e R* : x'x =1}
sphere: $? = {x e R? : x'x =1}
rotation group: SO(3) = {X: X'X =13}

compact Riemannian manifold M



Uniform distributions

circle: 6 ~ +0 4+ c
sphere: x ~ Ux (U orthogonal)

rotation group: X ~ UXV (U, V orthogonal)

compact Riemannian manifold:
invariant under isometries



Testing uniformity on the circle

Rayleigh (1919)
For observations x1, ...,x, on S,
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Reject uniformity for large T,,.



Sobolev tests of uniformity

t: M — E (vector space)

For observations x4, ...,x, on M,

g 1
T, = nfil® ==

Reject uniformity for large T,.

1), invariant under isometries.



Sobolev tests: construction of t

Giné (1975)
E). = kth eigenspace of Laplacian (k>1)
ty : M — E. C LQ(M)

Define
t: M — L*(M)
by
x— t(r) = Zaktk(a:)
k=1
where -

Za;fdim EiL < oo
k=1



Problem

How to choose aq,as,...?

few ap, #0 = (often) simple to calculate

all ap, #0 < consistent against all alternatives

Embarrassment of choice!



Data-driven tests of uniformity
Ledwina (1994, . . . ): data-driven tests of fit on R

Directional version:

(I) ((1,1,0,2,...) — (\1,1,...,1/,0,0,...)

~

k
k 1 n 2
S, = zjlg Z;tr(xi) score test
r= 1=

(ii) choose k using BIC (Schwarz, 1978)



Bayes Information Criterion:
Choose k to maximise
k
Bs(k) = S — (Z dim E) log n
r=1

Penalised score test

Penalises higher-dimensional models



Nice properties

Under uniformity, as n — oo,
~p
kEk — 1
d
H

Si X

1

Consistent against all alternatives



Example: sphere, S?

n n k
S, — %S: SN @+ )P (xTx))

i=1 j=1r=1

Bs(k) = S — k’(k’—|—2) log n.



Example: sphere, S?

n=5 n=10 n=15 n=20 n=25

1 8407 9635 0826 9900 0051

2 1060 338 167 o7 49

3 357 25 §) 3 0

4 02 2 1 0 0
5-10 84 0 0 0 0

Empirical distribution of k
(10,000 simulations)



Example: sphere, S?

Qa0 n=10 n=15 n=20 n=25 n=30

0.10 0.132 0.114  0.108 0.110 0.102
0.114 0.105 0.101 0.102 0.097
0.05 0.07/8 0.062 0.058 0.058 0.051
0.056 0.050 0.048 0.048 0.043
0.01 0.043 0.023 0.017 0.014  0.011
0.000 0.018 0.015 0.010 0.008

P(S;, > x3,,) and P(SF > x3.,)

S¥ = {1+ (1.37-10.315}) /n}S;

Red: values in a & 2+/a(1 — «)/10, 000.



Free-Lunch Learning

“There’s no such thing as a free lunch”

In learning theory there is!

(i) Learn a foreign language; vocabulary A; U As
Aq, As involve nqi, ngy independent associations

(ii) Forget (partially) A; U A,
(iii) Relearn only subset As

Then A; comes flooding back! ‘Free lunch’!



Artificial Neural Network

ANN with weight vector w € R™ sends input x to

output w'x:

X|—>WTX

Teaching ANN to associate inputs x1,...,X. with outputs
di,...,d. puts weight vector into

{w: Xw=d}

where



Learning, forgetting, relearning

(i) Learn A3 U As: weight vector is wy
X1W0 = d1 X2W0 = d2
(ii) Forget (partially) A; U As: weight vector is wy

squared error on Ay is || X;wy; — dq||?

(iii) Relearn only subset As: weight vector is wo
(orthogonal projection of w; onto As)

squared error on Ay is || X;wa — dq||?



After forgetting A; U As,

squared error on Ay is || X;wy — dq||?
After relearning As,

squared error on Aq is || X;wa — dq||?

Amount of FLL is

0 = [|Xqwy — dy||* — [ Xywa — dy||?

0 > 0 < relearning A5 brings w closer to A;



(a) Synaptic drift

Forgetting A; U A5 moves weight vector from wq to wj.

W] = WtV

with
v isotropic (||v]|~'v uniform)



‘Free Lunch’ results

If n1 + ny < n, rows of X are i.i.d. and d; is isotropic
then

median (6) > 0
nin
El] = ;;E IxI*]E [JIv]?]
P(6>0 — 1 n — o0

Under drift, free lunch is very probable!



(b) Synaptic fading

Forgetting A; U A5 moves weight vector from wq to wj.

W1 = T'Wo

If n1 +no < n, rows of X; are i.i.d. and d; is isotropic
then

E[0] < 0
P(6>0 — 0, n — 00

Under fading, free lunch is very unlikely



