SAMPLING FROM POPULATIONS WITH LARGE NUMBER OF CLASSES

Mihhail Juhkam, Kalev Pärna

1/19

Problem formulation

- Consider a population divided into mutually exclusive classes, the total number of classes is unknown
- We wish to draw a sample which contains at least one object from each class
- Increasing the sample and identification of membership of objects is often costly or time-consuming
- We may limit ourselves with discovering those classes, which represent a dominating part (e.g. 99%) of the population

Coverage of a sample

- Let s be the number of classes (s is unknown)
- ► Let the relative frequencies of classes be $p_1 \ge p_2 \ge \ldots \ge p_s, \sum_{i=1}^s p_i = 1.$
- We call the set $\{p_i\}_{i=1}^s$ a *class distribution* of population
- Define the coverage of a sample as the sum of relative frequencies of classes which are represented in the sample
- Two questions arise:
 - Is the coverage of a given sample large enough?
 - If not, then, how many additional objects we have to draw into the sample to achieve the given coverage?

Sampling schemes

- Multinomial scheme drawing a sample of size n from urn with replacement
- ► Poisson scheme s simultaneous Poisson processes with itensities p₁ ≥ p₂ ≥ ... ≥ p_s, sample is drawn during time ν
- These schemes are approximately identical if p_i's are small
- Further we will discuss only Poisson scheme

Coverage as a random variable

Introduce random indicators

$$I_i^{\nu} = \begin{cases} 1, & \text{if color } i \text{ is represented in the sample up to time } \nu, \\ 0, & \text{otherwise}, \end{cases}$$

i = 1, 2, . . . , *s*.

The coverage of the sample then equals

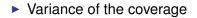
$$C_{\nu} := \sum_{i=1}^{s} p_i I_i^{\nu}$$

• Distribution of I_i^{ν} : $P \{ I_i^{\nu} = 0 \} = e^{-\nu p_i},$ $P \{ I_i^{\nu} = 1 \} = 1 - e^{-\nu p_i}$

Mean and variance of coverage

Mean value of the coverage

$$\mathit{EC}_{\nu} = \sum_{i=1}^{s} \mathit{p}_i (1 - e^{-\nu \mathit{p}_i})$$



$$DC_{\nu} = \sum_{i=1}^{s} p_i^2 e^{-\nu p_i} (1 - e^{-\nu p_i})$$

• Example: equiprobable classes $p_i = 1/s, i = 1, ..., s$

$$EC_{
u} = 1 - e^{-
u/s}$$

 $DC_{
u} = rac{1}{s}e^{-
u/s}(1 - e^{-
u/s})$

Defining class distribution directly

 Class distribution can be defined directly by a nonincreasing function π(i, d) of class number i and a vector of parameters d

$$p_i = \pi(i, \vec{\theta})$$

Examples:

- Uniform class distribution $\pi(i) = 1/s, i = 1, ..., s$
- Linearly decreasing class distribution π(*i*, α) = p₀ − α*i*, α > 0, *i* = 1,..., s
- Exponentially decreasing class distribution π(i, β) = p₀βⁱ, 0 < β < 1, i = 1,...,s

Defining class distribution by density function

Class distribution can be defined by a density function f(p) which satisfies two conditions

•
$$f(p) = 0$$
 for $p \le 0$

•
$$\int_0^\infty \frac{f(p)}{p} dp < \infty$$

- Algorithm:
 - ▶ Let g(p) = f(p)/p
 - Find points $0 = \xi_s < \xi_{s-1} < \ldots < \xi_1 < \xi_0 = \infty$ such that

$$\int_{\xi_i}^{\xi_{i-1}} g(p) dp = 1, \;\; i = 1, \dots, s-1, \;\; 0 < \int_{\xi_s}^{\xi_{s-1}} g(p) dp \leq 1$$

Define the class probabilities by

$$p_i = \int_{\xi_i}^{\xi_{i-1}} f(p) dp, \quad i = 1, \dots, s$$

Example: Defining class distribution by density function

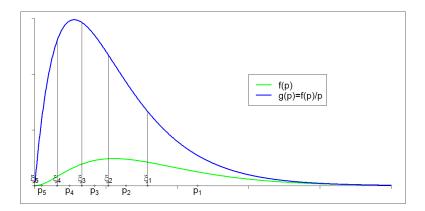


Figure: Defining class distribution by Gamma density

Finding density that produces a given set of class probabilities

- The set of class probabilities is defined directly by function p_i = π(i)
- How to find such density function *f* that produces the same set of probabilities?
- The approximate density (when s is large) is

$$f(x) = -x \left(\pi^{-1}(x) \right)', \ x > 0.$$

▶ For example: $p_i = p_0\beta^i$, i = 1, ..., s, $0 < \beta < 1$ then

$$f(x) = -x \left(\frac{\ln x - \ln p_0}{\ln \beta}\right)' = -\frac{1}{\ln \beta}, \ x \in [p_0 \beta^s, p_0 \beta]$$

Estimation of sample coverage: nonparametric approach

Turing estimator proposed by I.J. Good (1953)

$$\hat{C}_{Tur} = 1 - rac{t_1}{n},$$

where t_1 is the number of classes in sample, which are represented by exactly one object. Normal limit law for this estimator has been proved

$$\exists \delta: \quad \frac{C_{\nu} - C_{Tur}}{\delta} \sqrt{s} \rightarrow N(0, \delta)$$

・ロン ・同 と ・ ヨン ・ ヨン … ヨ

as $s
ightarrow \infty$

Estimation of sample coverage: parametric approach

- Gamma-Poisson model was used by S. Engen (1974) (probabilities are defined by Gamma density function, Poisson sampling scheme)
- The idea is to
 - estimate the parameters of Gamma distribution
 - approximate the expression of mean coverage

$$\begin{split} \mathsf{EC}_{\nu} &= \sum_{i=1}^{s} p_{i}(1-e^{-\nu p_{i}}) \approx \sum_{i=1}^{s} \int_{\xi_{i}}^{\xi_{i-1}} p(1-e^{-\nu p}) g(p) dp \\ &= \int_{0}^{\infty} p(1-e^{-\nu p}) g(p) dp = 1 - \int_{0}^{\infty} e^{-\nu p} f(p) dp, \end{split}$$

where *f* is density of Gamma distribution and g(p) = f(p)/p
integrate the last expression and get the estimate of sample coverage in terms of parameters of Gamma distribution

Estimation of required sample size for exponentially decreasing class distribution

 Consider the exponentially decreasing class distribution which is given by

$$p_i = p_0 \beta^i, \ 0 < \beta < 1, i = 1, \dots, s$$

 Corresponding density function which defines the same class distribution is given by

$$f(x,\beta) = \begin{cases} -\frac{1}{\ln\beta}, & x \in [p_0\beta^s, p_0\beta], \\ 0, & \text{otherwise}, \end{cases}$$

- We are interested in estimating the sample size ν_{1−η}, required to achieve the given coverage 1 − η
- Denote by T_x the number of classes which are represented in sample by exactly x objects. The random variables T_x are called *size indices*

Estimation of required sample size for exponentially decreasing class distribution

• The expectations ET_x , x = 1, 2, ... express as follows

$$ET_x = \sum_{i=1}^s \frac{(\nu p_i)^x}{x!} e^{-\nu p_i}$$

- ► It can be shown that $ET_x \to -\frac{1}{x \ln \beta}$ as $s, \nu \to \infty$ so that $s/\nu = const$
- After substituting the expectations ET_x by the realizations t_x of size indices T_x we obtain the system of equations

$$-\frac{1}{x\ln\beta}=t_x, \ x=1,2,\ldots.$$
 (1)

The least squares estimate of β from the system (1) (if we use first m equations) is

$$\hat{\beta} = \frac{\sum_{x=1}^{m} \frac{1}{x^2}}{\sum_{x=1}^{m} \frac{t_x}{x}}$$

Estimation of required sample size for exponentially decreasing class distribution

 Next we use the approximative expression of mean sample coverage

$$EC_{
u} pprox \int_0^\infty p(1-e^{-
u p})f(p)dp,$$

• After substituting $\nu = \nu_{1-\eta}$, $EC_{\nu_{1-\eta}} = 1 - \eta$ and $f(\rho) = -\frac{1}{\ln \hat{\beta}}$ we obtain

$$\eta \approx -\frac{1-\beta^{\nu_{1-\eta}}}{\nu_{1-\eta}\ln\beta}$$
(2)

The estimate of required sample size ν_{1-η} can be obtained by numerical solving of the equation (2) Numerical example: estimation of required sample size

- We simulated 100 multinomial samples of size $\nu = 500$ from 4 populations with exponentially decreasing class distribution with $\beta = 0.95, 0.97, 0.98$ and 0.99.
- We estimated required sample sizes v_{0.99}, v_{0.995} and v_{0.999} for acieving coverages 0.99, 0.995 and 0.999 using method proposed before
- We obtained the actual required sample sizes ν_{0.99}, ν_{0.995} and ν_{0.999} by continuing simulation
- The relative errors of estimate were calculated and averaged over 100 samples

$$\rho = AVG\left(\frac{\hat{\nu}_{1-\eta} - \nu_{1-\eta}}{\nu_{1-\eta}}\right)$$

Class distribution used in example

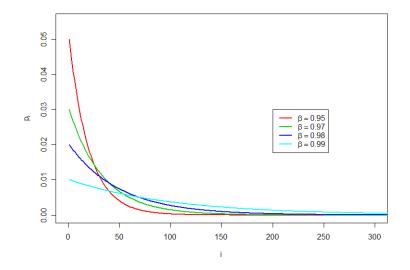


Figure: Exponentially decreasing class distribution used in example

Results of numerical example: estimation of required sample size

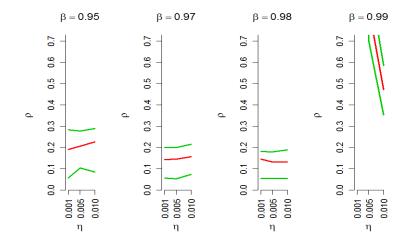


Figure: Average relative error of estimated sample size

Conclusion

- The proposed metod for estimation of the required sample size works for populations with large number of classes and vor values of β wich are not very close to 1
- How to check assumption that the class distribution is exponentially decreasing?
- Is there any simple estimate for some other family of class distributions?