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Tartu, June 28, 2007

Christian Genest Johanna Nešlehová
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Fact of life:

Copula modeling
has become
exceedingly

popular
in recent years.
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Fact of life:

Copula modeling
has become
exceedingly

popular
in recent years.

“Even I agree!”

(Thomas Mikosch)

Christian Genest Johanna Nešlehová
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What is a copula model for a (bivariate) distribution H?

It consists of assuming

H(x , y) = C{F (x),G (y)}, x , y ∈ R

for some
C ∈ (Cθ), F ∈ (Fα), G ∈ (Gβ).

Given data (X1,Y1), . . . , (Xn,Yn) from H, the aim is to estimate
the unknown parameters and retrieve C = Cθ0

.

When H is continuous, this can be done consistently, but...

What if X ,Y ∈ {0, 1, . . .}?
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1. Lack of uniqueness of the copula

If H is continuous, there is a unique function C such that

H(x , y) = C{F (x),G (y)}, x , y ∈ R.

The copula C can be retrieved from H, viz.

C (u, v) = H{F−1(u),G−1(v)}, u, v ∈ (0, 1).

C is the distribution of the pair (U,V ) = (F (X ),G (Y )), i.e.,

C (u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ (0, 1).
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What happens in the discrete case?

If H is discrete, there are several functions A such that

H(x , y) = A{F (x),G (y)}, x , y ∈ R.

The following is a solution but not a copula (or a distribution):

B(u, v) = H{F−1(u),G−1(v)}, u, v ∈ (0, 1).

The following is another solution (i.e., D 6= B) and not a copula:

D(u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ (0, 1).
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2. Extent of the unidentifiability issue

Given a bivariate distribution function H with discrete margins, let
CH be the set of copulas C for which

H(x , y) = C{F (x),G (y)}, x , y ∈ R.

Questions:

X Can we get a sense of the size of the set CH?

X What are the “smallest” and “largest” elements in CH?
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Pointwise bounds on CH

It is well known that in general

W (u, v) ≤ C (u, v) ≤ M(u, v), u, v ∈ [0, 1]

where W and M are the Fréchet–Hoeffding bounds.

To assess the extent of unidentifiability, one needs sharp bounds

C−

H (u, v) ≤ C (u, v) ≤ C+
H (u, v), u, v ∈ [0, 1]

that apply to any C ∈ CH , i.e., to any copula compatible with H.

Such bounds exist; they were derived by Carley (2002).
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Holly Carley’s bounds: concrete example

X = 0 X = 1 X = 2 X = 3 Total
Y = 2 1 2 3 0 6
Y = 1 1 3 6 2 12
Y = 0 1 1 3 1 6

3 6 12 3 24
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Carley bounds for Kendall’s tau and Spearman’s rho

Explicit expressions are available for Carley bounds on

τ(C ) = −1+4

∫ ∫

C (u, v)dC (u, v), ρ(C ) = −3+12

∫ ∫

C (u, v)dvdu.

A sense of the unidentifiability issue is conveyed
by

[κ(C−

H
), κ(C+

H
)]

for any measure of concordance κ (Scarsini 1984).

“I’m Holly [not Holy]”
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Example: X and Y are Bernoulli

For Pr(X = 0) = Pr(Y = 0) = p and Pr(X = 0,Y = 0) = r :

Plot of τ(C−

H ) and τ(C+
H ) as a function of p and r ;

the difference between the two bounds is shown in the right panel.
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3. Interplay between copula and dependence

In the continuous case, C characterizes dependence, e.g.,

C (u, v) = uv ⇔ X ⊥ Y ,

C (u, v) = min(u, v) ⇔ G (Y ) = F (X ),

C (u, v) = max(0, u + v − 1) ⇔ G (Y ) = 1 − F (X ).

Also if κ(X ,Y ) is a measure of association, then

κ(X ,Y ) = κ(C ).
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In the discrete case, copula 6= dependence

If (X ,Y ) ∼ H(x , y) = C{F (x),G (y)}, then

C (u, v) = uv ⇒ X ⊥ Y

but
X ⊥ Y ; C (u, v) = uv .

Similarly, monotone functional dependence is not equivalent to

H(x , y) = W {F (x),G (y)} or H(x , y) = M{F (x),G (y)}.
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Example from Marshall (1996)

Take X ∼ Bernoulli(1 − p), Y ∼ Bernoulli(1 − q).

• (p, q) ∈ [0, 1/3] × [0, 1/3]:
perfect positive dependence

• (p, q) = (1/
√

3, 1/
√

3):
independence

• (p, q) ∈ [2/3, 1] × [2/3, 1]:
perfect negative dependence
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4. Other consequence of margin-dependence

All traditional measures of association depend on margins. /

As an illustration, suppose X and Y are Bernoulli with

Pr(X = 0) = p, Pr(Y = 0) = q, Pr(X = 0,Y = 0) = r .

Then, e.g.,

τ(X ,Y ) = Pr{(X1 − X2)(Y1 − Y2) > 0}
− Pr{(X1 − X2)(Y1 − Y2) < 0}

= r − pq.
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A theorem due to Marshall (1996)

“Let H be the class of bivariate distribution
functions whose support is contained in N

2.

Assume that κ is a dependence measure such that

C ∈ CH ⇒ κ(H) = κ(C )

holds for all H ∈ H.

Then κ is constant.” /
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5. Consequences for inference

In the continuous case, the copula is unique and invariant by
increasing transformations of the margins.

Inference on θ can thus be based on the maximally invariant
statistics, i.e., the normalized ranks

(

R1

n
,
S1

n

)

, . . . ,

(

Rn

n
,
Sn

n

)

.

This amounts to estimating the margins conservatively, because

Ûi = Fn(Xi) =
1

n

n
∑

j=1

1(Xj ≤ Xi ) =
Ri

n
, i ∈ {1, . . . , n}.
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Most popular approaches to estimation

• Maximize the log pseudo-likelihood as per Genest et al.
(1995):

ℓ(θ) =
1

n

n
∑

i=1

log[cθ{Fn(xi),Gn(yi )}].

• Use a moment estimator of θ, e.g.,

θ̂n = τ−1(τn),

where τ : Θ → [−1, 1] : θ 7→ τ(Cθ) is one-to-one and

τn = (Nc − Nd)
/

(

n

2

)

.
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What happens in the discrete case?

Assume (X1,Y1), . . . , (Xn,Yn) is an iid sample from

Hθ(x , y) = Cθ{F (x),G (y)}
with F and G discrete.

Do the same strategies work?

• Ties occur in the data, e.g., for some i 6= j ,

Xi = Xj or Yi = Yj or both.

• How do we account for ties?
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Adjustment for ties, e.g., for inversion of τ

Different options can be envisaged:

Option 1 (split ties): τn = (Nc − Nd)
/

(

n

2

)

Option 2 (ignore ties): τa,n = (Nc − Nd)/(Nc + Nd)

Option 3 (adjust for ties): τb,n = (Nc − Nd)/
√

NxNy

where

Nx =
∑

i<j

1(xi 6= xj) and Ny =
∑

i<j

1(yi 6= yj).
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Modest simulation experiment

Draw 10, 000 samples (X1,Y1), . . . , (Xn,Yn) of size n = 100 from

Hθ(x , y) = Cθ{F (x),G (y)} ,

where Cθ is a Clayton copula and F , G are discrete distributions.

Since τ = θ/(θ + 2), pick τ̂ ∈ {τn, τa,n, τb,n} and let

θ̂ = 2
τ̂

1 − τ̂
.
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Modeling count data with copulas: Should we?



Lack of uniqueness Unidentifiability Interplay Dependence measures Inference Conclusion

Example: Geometric distributions

θ̂ based on τn θ̂ based on τa,n θ̂ based on τb,n

Pr(X = 0) = 0.05 , Pr(Y = 0) = 0.1 and θ = 2.
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What is the source of this bias?

It can be seen that τn is an unbiased estimator of

τ(H) = τ(Cz
H ),

where Cz

H is a specific element of CH . However, Cz

H 6= Cθ.

In general, τa,n and τb,n are biased estimators of τ(Cθ) because

Xi = F−1(Ui) and Yi = G−1(Vi ) 6⇒ (F (Xi ),G (Yi )) ∼ Cθ.

In short, the discretization of (Ui ,Vi ) is irreversible. /
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Modeling count data with copulas: Should we?



Lack of uniqueness Unidentifiability Interplay Dependence measures Inference Conclusion

Is θ estimable at all?

In the continuous case, no problem!

In the discrete case,

X The issue is not completely settled yet.

X Rank-based methods seem hopeless. /

X Even with the full likelihood, an identifiability issue remains
(maybe).
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There are cases where maximum likelihood works! ,,

Let X ,Y be Bernoulli with Pr(X = 0) = p, Pr(Y = 0) = q,

Pr(X = 0,Y = 0) = Cθ(p, q).

Suppose the dependence arises through an FGM family, viz.

Cθ(u, v) = uv + θuv(1 − u)(1 − v), θ ∈ [−1, 1].

Generate 10,000 random samples of size n = 100.
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Likelihood

Denote
pij = Pr(X = i ,Y = j), i , j ∈ {0, 1}.

The log-likelihood to be maximized is

n00 log(p00) + n01 log(p01) + n10 log(p10) + n11 log(p11),

where
p00 = Cθ(p, q) = pq + θpq(1− p)(1 − q)

and p01 = p − p00, p10 = q − p00, p11 = 1 − p − q + p00.
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Results

θ̂ based on ML θ̂ based on τn θ̂ based on τb,n

Remember: focus on bias, not on normality!
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6. Conclusion: Are copula models useful for discrete data?

Despite the unidentifiability issue, models of the type

H(x , y) = C{F (x),G (y)}, C ∈ (Cθ)

are still valid, even when X and Y are discrete.

Furthermore,

• H often inherits dependence properties from C .

• θ continues to govern association between X and Y .
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Dependence properties of C are inherited by H

If X and Y are discrete and

H(x , y) = C{F (x),G (y)},

then
DEP(U,V ) ⇒ DEP(X ,Y ).

Here, DEP could be either of the following dependence concepts:

PQD, LTD, RTI, SI, LRD.
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θ is still a dependence parameter

In order for a family (Cθ) to yield meaningful models, a
fundamental requirement is

θ < θ′ ⇒ Cθ(u, v) ≤ Cθ′(u, v) (i.e., Cθ ≺PQD Cθ′).

This implies, e.g.,

θ < θ′ ⇒ τ(Cθ) ≤ τ(Cθ′) and ρ(Cθ) ≤ ρ(Cθ′).
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Given a PQD-ordered copula family (Cθ), suppose that

Hθ(x , y) = Cθ{F (x),G (y)}, x , y ∈ R.

Then whether X and Y are discrete or not, one has

Cθ ≺PQD Cθ′ ⇒ Hθ ≺PQD Hθ′ .

In the discrete case, however, the reverse implication holds only for
the very special copula:

Hθ ≺PQD Hθ′ ⇔ Cz
θ ≺PQD Cz

θ′ .
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Summary

X The road to copula modeling of count data is treacherous.

X Much research remains to be done, particularly concerning
inferential aspects of the problem.

X For more details, read

C. Genest & J. Nešlehová (2007).
A primer on copulas for count data.
The ASTIN Bulletin, 37, in press.
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Any questions?
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Encore: The “continuization” procedure

X If H is discrete, it defines a contingency table.

X Spread the mass uniformly in each cell.

X Call the resulting copula Cz
H ∈ CH .

Illustration for Bernoulli variates X and Y :

Pr(X = 0) = 0.3, Pr(Y = 0) = 0.4, Pr(X = 0,Y = 0) = 0.1
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Good properties of Cz
H

Cz

H is the best possible candidate if you want to think of the
copula associated with a discrete H, because...

• Cz
H is an absolutely continuous copula.

• There exists an algebraically closed expression for it.

• X ⊥ Y ⇔ Cz

(X ,Y )(u, v) = uv .

• For any concordance measure, κ(H) = κ(Cz

H ).

• If (X̃ , Ỹ ) is distributed as Cz

H , then

DEP(X ,Y ) ⇔ DEP(X̃ , Ỹ ).
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In particular, DEP(X ,Y ) could be

• X and Y are in positive quadrant dependence

• Y is LTD or RTI in X

• Y is stochastically increasing in X

• X and Y are in positive likelihood ratio dependence

See, e.g., Denuit & Lambert (2005), Mesfioui & Tajar (2005),
Nešlehová (2007).
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Limitations of Cz
H

Cz

H is a valiant knight but it does not solve all the problems:

• Cz
H depends on the margins.

• When F (X ) = G (Y ) 6⇒ Cz

(X ,Y ) = min(u, v).

• When F (X ) = Ḡ (Y ) 6⇒ Cz

(X ,Y ) = max(0, u + v − 1).

• In fact, Cz

(X ,Y ) never equals M or W .

• As a consequence, one has always |κ(Cz

(X ,Y ))| < 1.
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