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Missing data. Dropouts

Let X = (X1, . . . , Xm) be an outcome variable with repeated measurements at
the time points 1, . . . , m.

Suppose that Xj ∼ Fj (j = 1, . . . , m), Fj ∈ P.

For n subjects the data are X = (xij), i = 1, . . . , n; j = 1, . . . , m

Definition 1. Dropout or attrition is missingness in data which occurs when
subject leaves the study prematurely and does not return.

Definition 2. Let k be the time point at which the dropout process starts. The
vector H = (X1, X2, . . . , Xk−1) is called history of measurements.
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Data matrix
 

Time points / measurements 

1 2 … j … k-1 k … m 
 

Subjects 

X1 X2 … Xj … Xk-1 Xk … Xm 

1 x11 x12 … x1j … x1k-1 x1k … x1m 
2 x21 x22 … x2j … x2k-1 x2k … x2m 

…          

i xi1 xi2 … xij … xik-1 xik … xim 

…          

n xn1 xn2 … xnj … xnk-1 xnk … xnm 

 

Dropouts 

 

History  
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Handling missing data. Classification

The classification of dropout processes

• Completely random dropout (CRD) – dropout and measurement processes
are independent, so dropouts are simply random missing values;

• Random dropout (RD) – dropout process depends on observed measure-
ments;

• Informative dropout (ID) – dropout process additionally depends on unob-
served measurements, ie those that would have been observed if the subject
had not dropped out.

Rubin (1976), Little & Rubin (1987)

We work with the data we don’t have
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Imputation

Definition 3. Imputation (filling in, substitution) is a strategy for completing
missing value in the data with plausible value which is an estimate of the true
value of the unobserved observation.

Methods for handling missing data

• Single imputation methods. Missing value is replaced with a single value.

• Multiple imputation methods (MI).

• Model based analysis (selection model, pattern-mixture model).

Imputation – drawing the value from a predictive (conditional) distribution of
the missing values
⇒ requires the method of creating a predictive (conditional) distribution for the
imputed value based on the observed values.

Little & Rubin (1987):

Imputation is especially important in case of small sample sizes.
It makes sense to consider imputation of dropouts separately from modelling data.
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Imputation by conditional distribution

We use the idea of imputing a missing value based on conditional distribution of
dropout at time point k conditioned to the history up to time point k − 1.

Steps:

1. Estimate univariate marginal distributions F1, . . . , Fk

2. Use marginal distributions to construct the multivariate joint distribution
F1, . . . , Fk ⇒ F

3. Find the conditional distribution F (xk|H) for missing data conditioned to
history as a predictive distribution

4. Predict the missing value from the conditional distribution

The joint distribution may be unknown, but using the copula it is possible to
find joint and conditional distributions.

Sklar (1959): copula links joint distribution function to their one-dimensional
marginals

H. Joe (2001):
”... if there is no natural multivariate family with a given parametric family for
the univariate margins, a common approach has been through copulas”
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Handling missing data. Situation

 

                  HISTORY       DROPOUT 
 
 

                                     …        
 
 
 
  MARGINAL DISTRIBUTIONS           IMPUTATION 

 

                       …        
 

 

   

        ?? 

JOINT  DISTRIBUTION                CONDITIONAL DISTRIBUTION 

            ? 

 

       COPULA     

 

 

 

 

 

 

X1 X2 Xk-1 Xk 

F1 F2 Fk-1 Fk 

F(x1, x2, …xk-1, xk ) 

F(x1, x2, …xk-1, xk ) = C(F1, F2, …,Fk-1, Fk; R) 

F(xk | x1, x2, …xk-1) 
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Copula. Repeated measurements

Repeated measurements X1, . . . , Xk, Xj ∼ Fj

Joint distribution

Using marginal distributions F1(x1), . . . , Fk(xk) and a copula C, the function
C(F1(x1), . . . , Fk(xk)) defines a joint distribution function

F (x1, . . . , xk) = C(F1(x1), . . . , Fk(xk)).

If marginal distributions are continuous, then the copula C is unique for every
fixed F and equals

C(u1, . . . , uk) = F (F−1
1 (u1), . . . , F

−1
k (uk)),

F−1
1 , . . . , F−1

k – the quantile functions of given marginals
u1, . . . , uk – uniform [0,1] variables

Sklar (1959), Nelsen (1998)
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Copula. Joint and conditional densities of repeated measurements

Joint density

If C and F1, . . . , Fk are differentiable, then joint density f(x1, . . . , xk) corresponding
to the joint distribution F (x1, . . . , xk) can be written by canonical representation
as a product of the marginal densities and the copula density

f(x1, . . . , xk) = f1(x1) · . . . · fk(xk) · c(F1, . . . , Fk),

where fi(xi) is the density corresponding to Fi and the copula density c is defined
as derivative of the copula (dependence function)

c =
∂kC

∂F1 · · · ∂Fk

.

Conditional density

f(xk|x1, . . . , xk−1) = fk(xk)
c(F1, . . . , Fk)

c(F1, . . . , Fk−1)
,

where c(F1, . . . , Fk), c(F1, . . . , Fk−1) – corresponding copula densities
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Gaussian copula. Basic definitions

Definition 4. Let R be a symmetric, positive definite matrix with diag(R) =
(1,1, . . . ,1)T and Φk the standardized k-variate normal distribution function with
correlation matrix R. Then the multivariate Gaussian copula is following:

Ck(u1, . . . , uk;R) = Φk(Φ
−1
1 (u1), . . . ,Φ

−1
1 (uk)).

Joint distribution

F (x1, . . . , xk;R) = Ck(u1, . . . , uk;R) = Φk[Φ
−1
1 (u1), . . . ,Φ

−1
1 (uk);R],

ui ∈ (0,1), i = 1, . . . , k, Φk – the standard multivariate normal distribution function
with correlation matrix R
Φ−1

1 – the inverse of the standard univariate normal distribution function

Joint density

fk(x1, . . . , xk|R) = φ1(x1) · . . . · φ1(xk) · ck[Φ1(x1), . . . ,Φ1(xk);R∗],

Φ1 and φ1 – the univariate standard normal distribution function and density,

respectively,

ck – dependence function (copula density), R∗ – matrix of dependence measures.
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Gaussian copula. Copula density

Yi = Φ−1
1 [Fi(Xi)], i = 1, . . . , k Clemen and Reilly (1999); Song (2000)

Density of normal copula

ck[Φ1(y1), . . . ,Φ1(yk);R∗] =
exp[(−1/2)Y TR−1Y + (1/2)Y TY ]

|R|1/2

=
exp{−Y T(R−1 − I)Y/2}

|R|1/2

Y = (Y1, . . . , Yk) and I is the k × k identity matrix.

Conditional density

f(xk|x1, . . . , xk−1) = fk(xk)
c(F1, . . . , Fk)

c(F1, . . . , Fk−1)
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Partition of correlation matrix

R = (rij), rij = corr(Xi, Xj), i, j = 1, . . . , k

Partition:

R =

Rk−1 r

rT 1

 (1)

Rk−1 is the correlation matrix of the history H = (X1, . . . , Xk−1)

r = (r1k, . . . , r(k−1)k)
T is the vector of correlations between the history and the

time point k

13



Derivation of general formula for imputation

Yi = Φ−1[Fi(Xi)]

Conditional density

f(yk|H;R∗) =
1√
2π

exp{−
1

2
[
(yk − rTR−1

k−1(y1, . . . , yk−1)T)2

(1− rTR−1
k−1r)

]} · (1− rTR−1
k−1r)

−1/2

argmaxyk
[ln(f(yk|H;R∗)]]

∂ ln f(yk|H;R∗)

∂yk

=
−yk + rTR−1

k−1(y1, . . . , yk−1)T

(1− rTR−1
k−1r)

= 0

⇒

ŷk = rT ·R−1
k−1 · Y

∗
k−1 (2)

r – the vector of correlations between the history and the time point k
R−1

k−1 – the inverse of correlation matrix of the history

Y ∗
k−1 = (y1, . . . , yk−1)T – the vector of observations for the subject who drops out

at the time point k.
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Results

Proposition 1

Let Y1, . . . , Yk, Yj = (y1j, . . . , ynj)T , j = 1, . . . , k, be repeated measurements with
standard normal marginals. Let the correlation matrix of the data be partitioned
as in (1), and let the dropout process start at the time point k, so that the history
has complete observations. Then the imputation of dropout at the time point k
is given by formula:

ŷk = rT ·R−1
k−1 · Y

∗
k−1 (2)

.

Corollary

Let X1, . . . , Xk, Xj = (x1j, . . . , xnj)T , j = 1, . . . , k, be repeated measurements with
arbitrary marginals F1, . . . , Fk. Then the imputation of dropout at the time point
k is given by formula (2).

We apply the following three-steps procedure to Proposition 1.

1. Use the normalizing transformation Yj = Φ−1
1 (Fj(Xj)), j = 1, . . . , k.

2. Impute the dropout using formula (2).

3. Use the inverse transformation Xk = F−1
k [Φ1(Yk)] for imputing the dropout

in initial measurements.
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Structures of correlation matrix

• Compound symmetry (CS), where the correlations between all time points
are equal, rij = ρ, i, j = 1, . . . , k, i 6= j

• First order autoregressive (AR), where the dependence between observations
decreases as the measurements get further in time
rij = ρ|j−i|, i, j = 1, . . . , k, i 6= j.

• 1-banded Toeplitz (BT), where only two sequential measurements are de-
pendent, rij = ρ, j = i + 1, i = 1, . . . , k − 2

Verbeke & Molenberghs (2001)
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Examples

Let k = 4

1. Compound symmetry structure:1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 .

2. First order autoregressive structure: 1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 .

3. 1-banded Toeplitz structure: 1 ρ 0 0
ρ 1 ρ 0
0 ρ 1 ρ
0 0 ρ 1

 .
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Special cases: 1. Compound symmetry

r = (ρ, . . . , ρ)T

Rk−1 =


1 ρ . . . ρ
ρ 1 . . . ρ
... . . .
ρ ρ . . . 1

 R−1
k−1 =


a b . . . b
b a . . . b
... . . .
b b . . . a



a = 1 +
(k − 2)ρ2

1− (k − 2)ρ2 + (k − 3)ρ
, b = −

ρ

1− (k − 2)ρ2 + (k − 3)ρ

(2) ⇒

ŷCS
k =

ρ

1 + (k − 2)ρ

k−1∑
i=1

yi (3)

y1, . . . , yk−1 – the observed values for the subject.
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Special cases: 2. Autoregressive dependencies

r = (ρk−1, ρk−2 . . . , ρ)T

Rk−1 =


1 ρ ρ2 . . . ρk−2

ρ 1 ρ . . . ρk−3

... ... ... . . . ...
ρk−2 ρk−3 ρk−4 . . . 1



R−1
k−1 =

1

ρ2 − 1



−1 ρ 0 . . . 0 0
ρ −(1 + ρ2) ρ . . . 0 0
0 ρ −(1 + ρ2) . . . 0 0
0 0 ρ . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . −(1 + ρ2) ρ
0 0 0 . . . ρ −1


.

(2) ⇒

ŷAR
k = ρ

Sk

Sk−1
(yk−1 − Ȳk−1) + Ȳk (4)

yk−1 – the last observed value for the subject
Ȳk−1, Ȳk – the mean values of kth and (k − 1)th time points
Sk, Sk−1 – the corresponding standard deviations
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Special cases: 3. 1-banded Toeplitz structure

r = (0, . . . ,0, ρ)

Rk−1 =


1 ρ 0 . . . 0 0
ρ 1 ρ . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 1 ρ
0 0 0 . . . ρ 1

 .

⇒ considering ŷk = rTR−1
k−1Y

∗
k−1 we are interested only in last row of inverse

matrix .
⇒

ŷ1BT
k =

1

|Rk−1|

k−1∑
j=1

(−1)k−j+1|Rj−1|ρk−jyj (5)

y1, . . . , yk−1 – the observed values for the subject
|Rj|, j = 1, . . . , k − 1, – the determinant of correlation matrix of history
|R0| = 1, |R1| = 1.

Example: dropping out starts at k = 3 and k = 4

k = 3: ŷ3 = 1
1−ρ2(−ρ2y1 + ρy2) = 1

|R2|(−ρ2y1 + ρy2);

k = 4: ŷ4 = 1
1−2ρ2(ρ

3y1 − ρ2y2 + ρ(1− ρ2)y3 = 1
|R3|(ρ

3y1 − ρ2y2 + ρ|R2|y3);
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Simulation study (1)

The goal of the simulation study is

to test the effectiveness of the new imputation formulas

by comparison with some well-known imputation methods with different missing
data mechanisms and sample sizes.

As quality measures we use the standardized difference between observed value
and imputed value.

Experimental design:

I – normal distribution, II– skewed distribution

3× 2× 2× 3 = 36 different data sets (CS, AR)
3× 2× 3 = 18 different data sets (1-BT)

k = 3,6,12 (data from 3-, 6-, 12-dimensional normal distribution)

n = 10,20 (small sample sizes)

ρ = 0.5, ρ = 0.7

3 missingness mechanisms (CRD, RD and ID).

For each combination 1000 runs were performed.
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Simulation study (2)

Algorithms for imputation were compared:

• in the case of CS: imputation by formula (3) vs imputation by linear prediction
Yk = β0Y1 + . . . + βk−1Yk−1;

• in the case of AR and BT : imputation by formulas (4), (5) vs imputation
using LOCF (Last Observation Carried Forward).

Results

• Bias is smaller in the case of CRD and RD.

• Standard deviations are more stable.

• The formula (3) could be used for small data sets with several repeated
measurements (k > n), when linear prediction does not work.

• The formulas (4) and (5) contain more information about data than the
LOCF -method.

⇒ In all simulation studies the results showed that the imputation algorithms
based on the copula approach are quite appropriate for modelling dropouts.

22



Advantages of Gaussian copula approach

The Gaussian copula is useful for its easy simulation method and is perhaps
easiest to employ in practice.

1. Normality of marginals is not necessary. Furthermore, the marginals may
have different distributions. The normalizing transformation will be used.

2. For a simple dependence structures simple formulas can be found for calcu-
lating conditional mean as imputed value.

3. Effectiveness, especially in the case of small sample size n relative to the
number of measurements (time points) k.

⇒ Gaussian copula represents a good approach for modelling dropouts in repeated
measurements study.
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Remarks

The Gaussian copula is not the only possibility to use in this approach.

• Lindsey and Lindsey (2002) suggested Student’s t-distribution, power-exponential
or skew Laplace distribution for modelling repeated responses instead of nor-
mal distribution.

• Vandenhende and Lambert (2002) tested several marginal distributions (Cauchy,
Gamma, log-normal) for dropout model.

• An important class of parametric copulas to model non-normal data is
the Archimedean copula (Genest, Rivest, 1993)
– Vandenhende and Lambert (2002) used Frank’s copula to model the de-
pendence between dropout and responses.

The family of copulas is sufficiently large and allows a wide range of multivariate

distributions as models.
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Thank you for your attention !
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