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Order Statistics
Let X1, · · · , Xn be n independent identically distributed
(IID) random variables from a popln. with cumulative
distribution function (cdf) F (x) and an absolutely
continuous probability density function (pdf) f(x).
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Order Statistics
Let X1, · · · , Xn be n independent identically distributed
(IID) random variables from a popln. with cumulative
distribution function (cdf) F (x) and an absolutely
continuous probability density function (pdf) f(x).

If we arrange these Xi’s in increasing order of
magnitude, we obtain the so-called order statistics,
denoted by

X1:n ≤ X2:n ≤ · · · ≤ Xn:n,

which are clearly dependent.
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Order Statistics (cont.)

Using multinomial argument, we readily have for
r = 1, · · · , n

Pr (x < Xr:n ≤ x + δx)

=
n!

(r − 1)!(n − r)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r + O
(

(δx)2
)

.
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Order Statistics (cont.)

Using multinomial argument, we readily have for
r = 1, · · · , n

Pr (x < Xr:n ≤ x + δx)

=
n!

(r − 1)!(n − r)!
{F (x)}r−1 {F (x + δx) − F (x)}

×{1 − F (x + δx)}n−r + O
(

(δx)2
)

.

From this, we obtain the pdf of Xr:n as (for x ∈ R)

fr:n(x) =
n!

(r − 1)!(n − r)!
{F (x)}r−1 {1 − F (x)}n−r

f(x).
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).

From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.
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Order Statistics (cont.)

Similarly, we obtain the joint pdf of (Xr:n, Xs:n) as (for
1 ≤ r < s ≤ n and x < y)

fr,s:n(x, y) =
n!

(r − 1)!(s − r − 1)!(n − s)!
{F (x)}r−1 f(x)

×{F (y) − F (x)}s−r−1 {1 − F (y)}n−s f(y).

From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.

The area of order statistics has a long and rich history,
and a very vast literature.
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Order Statistics (cont.)

Some key references are the books by
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Order Statistics (cont.)

Some key references are the books by

H.A. David (1970, 1981)

B. Arnold & N. Balakrishnan (1989)

N. Balakrishnan & A.C. Cohen (1991)

B. Arnold, N. Balakrishnan & H.N. Nagaraja (1992)

N. Balakrishnan & C.R. Rao (1998 a,b)

H.A. David & H.N. Nagaraja (2003)
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Order Statistics (cont.)

Some key references are the books by

H.A. David (1970, 1981)

B. Arnold & N. Balakrishnan (1989)

N. Balakrishnan & A.C. Cohen (1991)

B. Arnold, N. Balakrishnan & H.N. Nagaraja (1992)

N. Balakrishnan & C.R. Rao (1998 a,b)

H.A. David & H.N. Nagaraja (2003)

However, most of the literature on order statistics have
focused on the independent case, and very little on the
dependent case.
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Skew-normal Distribution

The skew-normal distribution has pdf

ϕ(x) = 2 Φ(λx)φ(x), x ∈ R, λ ∈ R,

where φ(·) and Φ(·) are standard normal pdf
and cdf, respectively.
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Skew-normal Distribution

The skew-normal distribution has pdf

ϕ(x) = 2 Φ(λx)φ(x), x ∈ R, λ ∈ R,

where φ(·) and Φ(·) are standard normal pdf
and cdf, respectively.

Note that
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Skew-normal Distribution

The skew-normal distribution has pdf

ϕ(x) = 2 Φ(λx)φ(x), x ∈ R, λ ∈ R,

where φ(·) and Φ(·) are standard normal pdf
and cdf, respectively.

Note that

λ ∈ R is a shape parameter;
λ = 0 corresponds to std. normal case;
λ → ∞ corresponds to half normal case;
Location and scale parameters can be
introduced into the model as well. – p. 8/41



Skew-Normal Distribution
(cont.)

Azzalini’s (1985, Scand. J. Statist.) article
generated a lot of work on this family.
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Skew-Normal Distribution
(cont.)

Azzalini’s (1985, Scand. J. Statist.) article
generated a lot of work on this family.

This distribution was, however, present either
explicitly or implicitly in the early works of

Birnbaum (1950)
Nelson (1964)
Weinstein (1964)
O’Hagan & Leonard (1976)
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Skew-Normal Distribution
(cont.)

Azzalini’s (1985, Scand. J. Statist.) article
generated a lot of work on this family.

This distribution was, however, present either
explicitly or implicitly in the early works of

Birnbaum (1950)
Nelson (1964)
Weinstein (1964)
O’Hagan & Leonard (1976)

Interpretation through hidden truncation /
selective reporting is due to Arnold & Beaver
(2002, Test) for univariate/multivariate case. – p. 9/41



Skew-Normal Distribution
(cont.)

New connection to OS
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Skew-Normal Distribution
(cont.)

New connection to OS
For n = 0, 1, 2, · · · , consider the integral

Ln(λ) =

∫ ∞

−∞
{Φ(λx)}n

φ(x) dx.
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Skew-Normal Distribution
(cont.)

New connection to OS
For n = 0, 1, 2, · · · , consider the integral

Ln(λ) =

∫ ∞

−∞
{Φ(λx)}n

φ(x) dx.

Clearly, L0(λ) = 1 ∀λ ∈ R.
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Skew-Normal Distribution
(cont.)

New connection to OS
For n = 0, 1, 2, · · · , consider the integral

Ln(λ) =

∫ ∞

−∞
{Φ(λx)}n

φ(x) dx.

Clearly, L0(λ) = 1 ∀λ ∈ R.

Furthermore,
∫ ∞

−∞

{

Φ(λx) − 1

2

}2n+1

φ(x) dx = 0

since the integrand is an odd function of x,
we obtain: – p. 10/41



Skew-Normal Distribution
(cont.)

L2n+1(λ) =
2n+1
∑

i=1

(−1)i+1 1

2i

(

2n + 1

i

)

L2n+1−i(λ), λ ∈ R,

for n = 0, 1, 2, . . .
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Skew-Normal Distribution
(cont.)

L2n+1(λ) =
2n+1
∑

i=1

(−1)i+1 1

2i

(

2n + 1

i

)

L2n+1−i(λ), λ ∈ R,

for n = 0, 1, 2, . . .

For n = 0, we simply obtain

L1(λ) =

∫ ∞

−∞
Φ(λx) φ(x) dx =

1

2
L0(λ) =

1

2
, λ ∈ R,
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Skew-Normal Distribution
(cont.)

L2n+1(λ) =
2n+1
∑

i=1

(−1)i+1 1

2i

(

2n + 1

i

)

L2n+1−i(λ), λ ∈ R,

for n = 0, 1, 2, . . .

For n = 0, we simply obtain

L1(λ) =

∫ ∞

−∞
Φ(λx) φ(x) dx =

1

2
L0(λ) =

1

2
, λ ∈ R,

which leads to the skew-normal density

ϕ1(x;λ) = 2 Φ(λx)φ(x), x ∈ R, λ ∈ R.
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Skew-Normal Distribution
(cont.)

From

L2(λ) =

∫ ∞

−∞
{Φ(λx)}2

φ(x) dx, λ ∈ R,
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Skew-Normal Distribution
(cont.)

From

L2(λ) =

∫ ∞

−∞
{Φ(λx)}2

φ(x) dx, λ ∈ R,

we find
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Skew-Normal Distribution
(cont.)

From

L2(λ) =

∫ ∞

−∞
{Φ(λx)}2

φ(x) dx, λ ∈ R,

we find
dL2(λ)

dλ
= 2

∫ ∞

−∞
x Φ(λx) φ(λx) φ(x) dx

=
1

π

∫ ∞

−∞
Φ(λx) x exp

{

−1

2
x2(1 + λ2)

}

dx

=
λ

π(1 + λ2)
√

1 + 2λ2
.
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Skew-Normal Distribution
(cont.)

From

L2(λ) =

∫ ∞

−∞
{Φ(λx)}2

φ(x) dx, λ ∈ R,

we find
dL2(λ)

dλ
= 2

∫ ∞

−∞
x Φ(λx) φ(λx) φ(x) dx

=
1

π

∫ ∞

−∞
Φ(λx) x exp

{

−1

2
x2(1 + λ2)

}

dx

=
λ

π(1 + λ2)
√

1 + 2λ2
.

Solving this differential equation, we obtain
– p. 12/41



Skew-Normal Distribution
(cont.)

L2(λ) =
1

π
tan−1

√
1 + 2λ2, λ ∈ R,
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Skew-Normal Distribution
(cont.)

L2(λ) =
1

π
tan−1

√
1 + 2λ2, λ ∈ R,

which leads to another skew-normal density
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Skew-Normal Distribution
(cont.)

L2(λ) =
1

π
tan−1

√
1 + 2λ2, λ ∈ R,

which leads to another skew-normal density

ϕ2(x;λ) =
π

tan−1
√

1 + 2λ2
{Φ(λx)}2

φ(x), x ∈ R, λ ∈ R.
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Skew-Normal Distribution
(cont.)

L2(λ) =
1

π
tan−1

√
1 + 2λ2, λ ∈ R,

which leads to another skew-normal density

ϕ2(x;λ) =
π

tan−1
√

1 + 2λ2
{Φ(λx)}2

φ(x), x ∈ R, λ ∈ R.

Remark 1: Interestingly, this family also
includes standard normal (when λ = 0) and
the half normal (when λ → ∞) distributions,
just as ϕ1(x;λ) does.
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Skew-Normal Distribution
(cont.)

Next, setting n = 1 in the relation, we get

– p. 14/41



Skew-Normal Distribution
(cont.)

Next, setting n = 1 in the relation, we get

L3(λ) =
3

2
L2(λ) − 3

4
L1(λ) +

1

8
L0(λ)

=
3

2π
tan−1

√
1 + 2λ2 − 1

4
, λ ∈ R,
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Skew-Normal Distribution
(cont.)

Next, setting n = 1 in the relation, we get

L3(λ) =
3

2
L2(λ) − 3

4
L1(λ) +

1

8
L0(λ)

=
3

2π
tan−1

√
1 + 2λ2 − 1

4
, λ ∈ R,

which leads to another skew-normal density
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Skew-Normal Distribution
(cont.)

Next, setting n = 1 in the relation, we get

L3(λ) =
3

2
L2(λ) − 3

4
L1(λ) +

1

8
L0(λ)

=
3

2π
tan−1

√
1 + 2λ2 − 1

4
, λ ∈ R,

which leads to another skew-normal density

ϕ3(x;λ) =
1

3
2π

tan−1
√

1 + 2λ2 − 1
4

{Φ(λx)}3
φ(x), x ∈ R.

– p. 14/41



Skew-Normal Distribution
(cont.)

Next, setting n = 1 in the relation, we get

L3(λ) =
3

2
L2(λ) − 3

4
L1(λ) +

1

8
L0(λ)

=
3

2π
tan−1

√
1 + 2λ2 − 1

4
, λ ∈ R,

which leads to another skew-normal density

ϕ3(x;λ) =
1

3
2π

tan−1
√

1 + 2λ2 − 1
4

{Φ(λx)}3
φ(x), x ∈ R.

Remark 2: Interestingly, this family also
includes standard normal (when λ = 0) and
the half normal (when λ → ∞) distributions,
just as ϕ1(x;λ) and ϕ2(x;λ) do. – p. 14/41



Skew-Normal Distribution
(cont.)

Remark 3: Evidently, in the special case
when λ = 1, the densities ϕ1(x;λ), ϕ(x;λ2)
and ϕ3(x;λ) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N(0, 1) distribution.
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Skew-Normal Distribution
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Remark 3: Evidently, in the special case
when λ = 1, the densities ϕ1(x;λ), ϕ(x;λ2)
and ϕ3(x;λ) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N(0, 1) distribution.

Remark 4: In addition, the integral Ln(λ) is
also involved in the means of OS from N(0, 1)
distribution. For example, with µm:m denoting
the mean of the largest OS in a sample of
size m from N(0, 1), we have
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Skew-Normal Distribution
(cont.)

Remark 3: Evidently, in the special case
when λ = 1, the densities ϕ1(x;λ), ϕ(x;λ2)
and ϕ3(x;λ) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N(0, 1) distribution.

Remark 4: In addition, the integral Ln(λ) is
also involved in the means of OS from N(0, 1)
distribution. For example, with µm:m denoting
the mean of the largest OS in a sample of
size m from N(0, 1), we have

µ2:2 =
L0√
π

, µ3:3 =
3L1(1)√

π
, µ4:4 =

6L2(1)√
π

, µ5:5 =
10L3(1)√

π
.

– p. 15/41



Skew-Normal Distribution
(cont.)

Natural questions that arise:
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Skew-Normal Distribution
(cont.)

Natural questions that arise:

First, we could consider a general
skew-normal family

ϕ(x;λ, p) = C(λ, p) {Φ(λx)}p
φ(x), x ∈ R, λ ∈ R, p > 0.
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Skew-Normal Distribution
(cont.)

Natural questions that arise:

First, we could consider a general
skew-normal family

ϕ(x;λ, p) = C(λ, p) {Φ(λx)}p
φ(x), x ∈ R, λ ∈ R, p > 0.

How about the normalizing constant?

How much flexibility is in this family?

Can we develop inference for this model?

Next, can we have a similar skewed look at
OS from BV and MV normal distributions?
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Skew-Normal Distribution
(cont.)

Natural questions that arise:

First, we could consider a general
skew-normal family

ϕ(x;λ, p) = C(λ, p) {Φ(λx)}p
φ(x), x ∈ R, λ ∈ R, p > 0.

How about the normalizing constant?

How much flexibility is in this family?

Can we develop inference for this model?

Next, can we have a similar skewed look at
OS from BV and MV normal distributions?

How about other distributions? – p. 16/41



OS from BVN Distribution

Let (X1, X2)
d
= BV N

(

µ1, µ2, σ
2
1, σ

2
2, ρ
)

.
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OS from BVN Distribution

Let (X1, X2)
d
= BV N

(

µ1, µ2, σ
2
1, σ

2
2, ρ
)

.

Let W1:2 ≤ W2:2 be the OS from (X1, X2).
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= BV N

(

µ1, µ2, σ
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1, σ

2
2, ρ
)

.
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OS from BVN Distribution

Let (X1, X2)
d
= BV N

(

µ1, µ2, σ
2
1, σ

2
2, ρ
)

.

Let W1:2 ≤ W2:2 be the OS from (X1, X2).

This bivariate case has been discussed by
many, including

S.S. Gupta and K.C.S. Pillai (1965)
A.P. Basu and J.K. Ghosh (1978)
H.N. Nagaraja (1982)
N. Balakrishnan (1993)
M. Cain (1994)
M. Cain and E. Pan (1995) – p. 17/41



Generalized Skew-Normal
Distribution

A variable Zλ1,λ2,ρ is said to have a
generalized skew-normal distribution,
denoted by GSN(λ1, λ2, ρ), if
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Generalized Skew-Normal
Distribution

A variable Zλ1,λ2,ρ is said to have a
generalized skew-normal distribution,
denoted by GSN(λ1, λ2, ρ), if

Zλ1,λ2,ρ
d
= X | (Y1 < λ1X,Y2 < λ2X), λ1, λ2 ∈ R, |ρ| < 1,

where X ∼ N(0, 1) independently of
(Y1, Y2) ∼ BV N(0, 0, 1, 1, ρ).
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Generalized Skew-Normal
Distribution

A variable Zλ1,λ2,ρ is said to have a
generalized skew-normal distribution,
denoted by GSN(λ1, λ2, ρ), if

Zλ1,λ2,ρ
d
= X | (Y1 < λ1X,Y2 < λ2X), λ1, λ2 ∈ R, |ρ| < 1,

where X ∼ N(0, 1) independently of
(Y1, Y2) ∼ BV N(0, 0, 1, 1, ρ).

It should be mentioned that Zλ1,λ2,ρ belongs to

SUN1,2(0, 0, 1,Ω
∗) [Arellano-Valle & Azzalini (2006)]

CSN1,2 [Farias, Molina & A.K. Gupta (2004)]
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Generalized Skew-Normal
Distribution (cont.)

It can shown that the pdf of Zλ1,λ2,ρ is
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Generalized Skew-Normal
Distribution (cont.)

It can shown that the pdf of Zλ1,λ2,ρ is

ϕ(z;λ1, λ2, ρ) = c(λ1, λ2, ρ) φ(z) Φ(λ1z, λ2z; ρ), z ∈ R,

with λ1, λ2 ∈ R, |ρ| < 1, and Φ(·, ·; ρ) denoting
the cdf of BV N(0, 0, 1, 1, ρ).
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Generalized Skew-Normal
Distribution (cont.)

It can shown that the pdf of Zλ1,λ2,ρ is

ϕ(z;λ1, λ2, ρ) = c(λ1, λ2, ρ) φ(z) Φ(λ1z, λ2z; ρ), z ∈ R,

with λ1, λ2 ∈ R, |ρ| < 1, and Φ(·, ·; ρ) denoting
the cdf of BV N(0, 0, 1, 1, ρ).

For determining c(λ1, λ2, ρ), we note that

c(λ1, λ2, ρ) ≡ 1

a(λ1, λ2, ρ)
=

1

P (Y1 < λ1X,Y2 < λ2X)
,

where X ∼ N(0, 1) independently of
(Y1, Y2) ∼ BV N(0, 0, 1, 1, ρ).
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Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have
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Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have

a(λ1, λ2, ρ) = P (Y1 < λ1X,Y2 < λ2X)

=
1

2π
cos−1

(

−(ρ + λ1λ2)
√

1 + λ2
1

√

1 + λ2
2

)

;

[Kotz, Balakrishnan and Johnson (2000)].
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Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have

a(λ1, λ2, ρ) = P (Y1 < λ1X,Y2 < λ2X)

=
1

2π
cos−1

(

−(ρ + λ1λ2)
√

1 + λ2
1

√

1 + λ2
2

)

;

[Kotz, Balakrishnan and Johnson (2000)].
The generalized skew-normal pdf is then
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Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have

a(λ1, λ2, ρ) = P (Y1 < λ1X,Y2 < λ2X)

=
1

2π
cos−1

(

−(ρ + λ1λ2)
√

1 + λ2
1

√

1 + λ2
2

)

;

[Kotz, Balakrishnan and Johnson (2000)].
The generalized skew-normal pdf is then

ϕ(z;λ1, λ2, ρ) =
2π

cos−1

(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

)φ(z)Φ(λ1z, λ2z; ρ)

for z, λ1, λ2 ∈ R, |ρ| < 1.
– p. 20/41



Generalized Skew-Normal
Distribution (cont.)

Let Φ(·, ·; δ) denote cdf of BV N(0, 0, 1, 1, δ),
and Φ(·; θ) denote cdf of SN(θ).
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Generalized Skew-Normal
Distribution (cont.)

Let Φ(·, ·; δ) denote cdf of BV N(0, 0, 1, 1, δ),
and Φ(·; θ) denote cdf of SN(θ).

Lemma 2: We then have
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Generalized Skew-Normal
Distribution (cont.)

Let Φ(·, ·; δ) denote cdf of BV N(0, 0, 1, 1, δ),
and Φ(·; θ) denote cdf of SN(θ).

Lemma 2: We then have

Φ(0, 0; δ) =
1

2π
cos−1(−δ),

Φ(γx, 0; δ) = Φ(0, γx; δ) =
1

2
Φ

(

γx;
−δ√
1 − δ2

)

,

Φ(γ1x, γ2x; δ) =
1

2
{Φ(γ1x; η1) + Φ(γ2x; η2) − I(γ1γ2)} ,

where I(a) = 0 if a > 0 and 1 if a < 0,

η1 =
1√

1 − δ2

(

γ2

γ1

− δ

)

, η2 =
1√

1 − δ2

(

γ1

γ2

− δ

)

.
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Generalized Skew-Normal
Distribution (cont.)

Theorem 1: If M(t;λ1, λ2, ρ) is the MGF of
Zλ1,λ2,ρ ∼ GSN(λ1, λ2, ρ), then
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Generalized Skew-Normal
Distribution (cont.)

Theorem 1: If M(t;λ1, λ2, ρ) is the MGF of
Zλ1,λ2,ρ ∼ GSN(λ1, λ2, ρ), then

M(t;λ1, λ2, ρ) =
2π

cos−1

(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

) et2/2

× Φ

(

λ1t
√

1 + λ2
1

,
λ2t

√

1 + λ2
2

;
ρ + λ1λ2

√

1 + λ2
1

√

1 + λ2
2

)

.
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Generalized Skew-Normal
Distribution (cont.)

Theorem 1: If M(t;λ1, λ2, ρ) is the MGF of
Zλ1,λ2,ρ ∼ GSN(λ1, λ2, ρ), then

M(t;λ1, λ2, ρ) =
2π

cos−1

(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

) et2/2

× Φ

(

λ1t
√

1 + λ2
1

,
λ2t

√

1 + λ2
2

;
ρ + λ1λ2

√

1 + λ2
1

√

1 + λ2
2

)

.

Corollary 1: Theorem 1 yields, for example,

E [Zλ1,λ2,ρ] =

√

π/2

cos−1

(

−(ρ+λ1λ2)√
1+λ2

1

√
1+λ2

2

)

{

λ1
√

1 + λ2
1

+
λ2

√

1 + λ2
2

}

.
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OS from TVN Distribution

Let (W1,W2,W3) ∼ TV N(0,Σ), where
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OS from TVN Distribution

Let (W1,W2,W3) ∼ TV N(0,Σ), where

Σ =









σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3









is a positive definite matrix.
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OS from TVN Distribution

Let (W1,W2,W3) ∼ TV N(0,Σ), where

Σ =









σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3









is a positive definite matrix.

Let W1:3 = min(W1,W2,W3) < W2:3 < W3:3 =
max(W1,W2,W3) denote the order statistics
from (W1,W2,W3).
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OS from TVN Distribution

Let (W1,W2,W3) ∼ TV N(0,Σ), where

Σ =









σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3









is a positive definite matrix.

Let W1:3 = min(W1,W2,W3) < W2:3 < W3:3 =
max(W1,W2,W3) denote the order statistics
from (W1,W2,W3).

Let Fi(t; Σ) denote the cdf of Wi:3, i = 1, 2, 3.
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OS from TVN Distribution
(cont.)

Theorem 2: The cdf of W3:3 is the mixture
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OS from TVN Distribution
(cont.)

Theorem 2: The cdf of W3:3 is the mixture

F3(t; Σ) = a(θ1)Φ

„

t

σ1
; θ1

«

+ a(θ2)Φ

„

t

σ2
; θ2

«

+ a(θ3)Φ

„

t

σ3
; θ3

«

,
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OS from TVN Distribution
(cont.)

Theorem 2: The cdf of W3:3 is the mixture

F3(t; Σ) = a(θ1)Φ

„

t

σ1
; θ1

«

+ a(θ2)Φ

„

t

σ2
; θ2

«

+ a(θ3)Φ

„

t

σ3
; θ3

«

,

where Φ(·;θ) denotes the cdf of GSN(θ),

a(λ1, λ2, ρ) =
1

2π
cos−1

0

B

@

−(ρ + λ1λ2)
q

1 + λ2
1

q

1 + λ2
2

1

C

A
,

θ1 =

0

B

@

σ1

σ2
− ρ12

q

1 − ρ2
12

,

σ1

σ3
− ρ13

q

1 − ρ2
13

,
ρ23 − ρ12ρ13

q

1 − ρ2
12

q

1 − ρ2
13

1

C

A
,

θ2 =

0

B

@

σ2

σ1
− ρ12

q

1 − ρ2
12

,

σ2

σ3
− ρ23

q

1 − ρ2
23

,
ρ13 − ρ12ρ23

q

1 − ρ2
12

q

1 − ρ2
23

1

C

A
,

θ3 =

0

B

@

σ3

σ1
− ρ13

q

1 − ρ2
13

,

σ3

σ2
− ρ23

q

1 − ρ2
23

,
ρ12 − ρ13ρ23

q

1 − ρ2
13

q

1 − ρ2
23

1

C

A
.
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OS from TVN Distribution
(cont.)

Theorem 3: The mgf of W3:3 is
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OS from TVN Distribution
(cont.)

Theorem 3: The mgf of W3:3 is

M3(s; Σ) = es2/2

(

Φ

 

r

1 − ρ12

2
s; α1

!

+ Φ

 

r

1 − ρ13

2
s;α2

!

+Φ

 

r

1 − ρ23

2
s;α3

!)

,
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OS from TVN Distribution
(cont.)

Theorem 3: The mgf of W3:3 is

M3(s; Σ) = es2/2

(

Φ

 

r

1 − ρ12

2
s; α1

!

+ Φ

 

r

1 − ρ13

2
s;α2

!

+Φ

 

r

1 − ρ23

2
s;α3

!)

,

where Φ(·; θ) is the cdf of SN(θ), and

α1 =
1 + ρ12 − ρ13 − ρ23√

A
,

α2 =
1 + ρ13 − ρ12 − ρ23√

A
,

α3 =
1 + ρ23 − ρ12 − ρ13√

A
,

A = 6 −
˘

(1 + ρ12)2 + (1 + ρ13)2 + (1 + ρ23)2
¯

+2 (ρ12ρ13 + ρ12ρ23 + ρ13ρ23) .
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OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,
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OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E (W3:3) =
1

2
√

π

{

√

1 − ρ12 +
√

1 − ρ13 +
√

1 − ρ23

}

and
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OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E (W3:3) =
1

2
√

π

{

√

1 − ρ12 +
√

1 − ρ13 +
√

1 − ρ23

}

and
V ar (W3:3) = 1 +

√
A

2π
− E2 (W3:3) .
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OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E (W3:3) =
1

2
√

π

{

√

1 − ρ12 +
√

1 − ρ13 +
√

1 − ρ23

}

and
V ar (W3:3) = 1 +

√
A

2π
− E2 (W3:3) .

Remark 5: Similar mixture forms can be
derived for the cdf of W1:3 and W2:3, and from
them explicit expressions for their mgf,
moments, etc.
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OS from TVN Distribution
(cont.)

Problems for further study:
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OS from TVN Distribution
(cont.)

Problems for further study:

Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?
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OS from TVN Distribution
(cont.)

Problems for further study:

Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MVN?
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OS Induced by Linear
Functions

Let X i = (X1i, . . . , Xpi)
T , i = 1, . . . , n, be iid

observations from MV N(µ,Σ), where
µ = (µ1, . . . , µp)

T and Σ = ((σij)).
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OS Induced by Linear
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Let X i = (X1i, . . . , Xpi)
T , i = 1, . . . , n, be iid

observations from MV N(µ,Σ), where
µ = (µ1, . . . , µp)

T and Σ = ((σij)).

Let P = {i1, . . . , im} (m ≥ 1) be a partition of
{1, . . . , p}, and Q its complementary partition.
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OS Induced by Linear
Functions

Let X i = (X1i, . . . , Xpi)
T , i = 1, . . . , n, be iid

observations from MV N(µ,Σ), where
µ = (µ1, . . . , µp)

T and Σ = ((σij)).

Let P = {i1, . . . , im} (m ≥ 1) be a partition of
{1, . . . , p}, and Q its complementary partition.

Let C = (c1, . . . , cp)
T be a vector of non-zero

constants.
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OS Induced by Linear
Functions

Let X i = (X1i, . . . , Xpi)
T , i = 1, . . . , n, be iid

observations from MV N(µ,Σ), where
µ = (µ1, . . . , µp)

T and Σ = ((σij)).

Let P = {i1, . . . , im} (m ≥ 1) be a partition of
{1, . . . , p}, and Q its complementary partition.

Let C = (c1, . . . , cp)
T be a vector of non-zero

constants.

Further, let us define for j = 1, . . . , n,

Xj =
∑

i∈P

ci Xij = CT
P Xj, Yj =

∑

i∈Q

ci Xij = CT
Q Xj.
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OS Induced by Linear
Functions (cont.)

Lemma 3: Evidently,
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OS Induced by Linear
Functions (cont.)

Lemma 3: Evidently,

µX = E(Xj) = CT
P µ,

µY = E(Yj) = CT
Q µ,

σ2
X = V ar(Xj) = CT

P Σ CP ,

σ2
Y = V ar(Yj) = CT

Q Σ CQ,

σX,Y = Cov(Xj, Yj) = CT
P Σ CQ,

ρ =
σX,Y

σXσY
=

CT
P Σ CQ

√

(CT
P Σ CP )(CT

Q Σ CQ)
.
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OS Induced by Linear
Functions (cont.)

Now, let

Sj = Xj + Yj = CT
P Xj + CT

QXj = CT Xj

for j = 1, . . . , n.
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OS Induced by Linear
Functions (cont.)

Now, let

Sj = Xj + Yj = CT
P Xj + CT

QXj = CT Xj

for j = 1, . . . , n.

Let S1:n ≤ S2:n ≤ · · · ≤ Sn:n denote the order
statistics of Sj ’s.
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OS Induced by Linear
Functions (cont.)

Now, let

Sj = Xj + Yj = CT
P Xj + CT

QXj = CT Xj

for j = 1, . . . , n.

Let S1:n ≤ S2:n ≤ · · · ≤ Sn:n denote the order
statistics of Sj ’s.

Let X [k:n] be the k-th induced multivariate
order statistic; i.e.,

X [k:n] = Xj whenever Sk:n = Sj .
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OS Induced by Linear
Functions (cont.)

Example 1: While analyzing extreme lake
levels in hydrology, the annual maximum level
at a location in the lake is a combination of
the daily water level averaged over the entire
lake and the up surge in local water levels
due to wind effects at that site [ Song,
Buchberger & Deddens (1992)].
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OS Induced by Linear
Functions (cont.)

Example 1: While analyzing extreme lake
levels in hydrology, the annual maximum level
at a location in the lake is a combination of
the daily water level averaged over the entire
lake and the up surge in local water levels
due to wind effects at that site [ Song,
Buchberger & Deddens (1992)].

Example 2: While evaluating the performance
of students in a course, the final grade may
often be a weighted average of the scores in
mid-term tests and the final examination.
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OS Induced by Linear
Functions (cont.)

Theorem 4: We have

X[k:n] = CT
P X [k:n] and Y[k:n] = CT

Q X [k:n].
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OS Induced by Linear
Functions (cont.)

Theorem 4: We have

X[k:n] = CT
P X [k:n] and Y[k:n] = CT

Q X [k:n].

Consequently, we readily obtain

E(X[k:n]) = CT
P µ + αk:n

8

>

<

>

:

CT
P ΣCP + CT

P ΣCQ
q

CT
P ΣCP + CT

QΣCQ + 2CT
P ΣCQ

9

>

=

>

;

,

where αk:n is the mean of the k-th OS from a
sample of size n from N(0, 1).
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OS Induced by Linear
Functions (cont.)

Theorem 4: We have

X[k:n] = CT
P X [k:n] and Y[k:n] = CT

Q X [k:n].

Consequently, we readily obtain

E(X[k:n]) = CT
P µ + αk:n

8

>

<

>

:

CT
P ΣCP + CT

P ΣCQ
q

CT
P ΣCP + CT

QΣCQ + 2CT
P ΣCQ

9

>

=

>

;

,

where αk:n is the mean of the k-th OS from a
sample of size n from N(0, 1).

Similar expressions can be derived for
V ar(X[k:n]) and other moments.
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for within a concomitant OS.
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for within a concomitant OS.

Theorem 5: For k = 1, . . . , n, we obtain
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for within a concomitant OS.

Theorem 5: For k = 1, . . . , n, we obtain

E(Xi[k:n]) = µi + αk:n

8

>

<

>

:

Pp
r=1 crσir

q

Pp
s=1

Pp
r=1 crcsσrs

9

>

=

>

;

, i = 1, . . . , p,

V ar(Xi[k:n]) = σii − (1 − βk,k:n)

(
`Pp

r=1 crσir

´2

Pp
s=1

Pp
r=1 crcsσrs

)

, i = 1, . . . , p,

Cov(Xi[k:n], Xj[k:n])) = σij − (1 − βk,k:n)


Pp

s=1

Pp
r=1 crcsσirσjs

Pp
s=1

Pp
r=1 crcsσrs

ff

,

1 ≤ i < j ≤ p,

where βk,k:n is the variance of the k-th OS
from a sample of size n from N(0, 1).
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for between concomitant OS.
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for between concomitant OS.

Theorem 6: For 1 ≤ k < ℓ < n, we obtain
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OS Induced by Linear
Functions (cont.)

By choosing the partitions P and Q suitably, we have
the following results for between concomitant OS.

Theorem 6: For 1 ≤ k < ℓ < n, we obtain

Cov(Xi[k:n],Xi[ℓ:n]) = βk,ℓ:n

{

(
∑p

r=1 crσir)
2

∑p
s=1

∑p
r=1 crcsσrs

}

,

i = 1, . . . , p,

Cov(Xi[k:n],Xj[ℓ:n])) = βk,ℓ:n)

{∑p
s=1

∑p
r=1 crcsσirσjs

∑p
s=1

∑p
r=1 crcsσrs

}

,

1 ≤ i < j ≤ p,

where βk,ℓ:n is covariance between k-th and
ℓ-th OS from a sample of size n from N(0, 1).
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OS Induced by Linear
Functions (cont.)

Corollary 3: V ar(X[k:n]) and V ar(Y[k:n]) can
be rewritten as
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OS Induced by Linear
Functions (cont.)

Corollary 3: V ar(X[k:n]) and V ar(Y[k:n]) can
be rewritten as

V ar(X[k:n]) = σ2
X − (1 − βk,k:n)

{

(

aσ2
X + bρσXσY

)2

∆

}

,

V ar(Y[k:n]) = σ2
Y − (1 − βk,k:n)

{

(

bσ2
Y + aρσXσY

)2

∆

}

,

where ∆ = a2σ2
X + b2σ2

Y + 2abρσXσY .

– p. 35/41



OS Induced by Linear
Functions (cont.)

Corollary 3: V ar(X[k:n]) and V ar(Y[k:n]) can
be rewritten as

V ar(X[k:n]) = σ2
X − (1 − βk,k:n)

{

(

aσ2
X + bρσXσY

)2

∆

}

,

V ar(Y[k:n]) = σ2
Y − (1 − βk,k:n)

{

(

bσ2
Y + aρσXσY

)2

∆

}

,

where ∆ = a2σ2
X + b2σ2

Y + 2abρσXσY .
Now, since βj,k:n > 0 [Bickel (1967)]
and

∑n
j=1 βj,k:n = 1 for 1 ≤ k ≤ n

[Arnold, Balakrishnan & Nagaraja (1992)],
we have 0 < βk,k:n < 1.
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OS Induced by Linear
Functions (cont.)

Consequently, we observe that

V ar(X[k:n]) < σ2
X and V ar(Y[k:n]) < σ2

Y

for all k = 1, . . . , n.
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OS Induced by Linear
Functions (cont.)

Consequently, we observe that

V ar(X[k:n]) < σ2
X and V ar(Y[k:n]) < σ2

Y

for all k = 1, . . . , n.

Using a similar argument, it can be shown
that

V ar(Xi[k:n]) < σii

for i = 1, . . . , p and all k = 1, . . . , n.
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OS from BV and TV t
Distributions

Arellano-Valle and Azzalini (2006) presented
unified multivariate skew-elliptical distribution
through conditional distributions.
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unified multivariate skew-elliptical distribution
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A special case of this distribution is a
generalized skew-tν distribution.
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OS from BV and TV t
Distributions

Arellano-Valle and Azzalini (2006) presented
unified multivariate skew-elliptical distribution
through conditional distributions.

A special case of this distribution is a
generalized skew-tν distribution.

Now, using skew-tν and generalized skew-tν
distributions, distributions and properties of
OS from BV and TV tν distributions can be
studied.
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OS from BV and TV t
Distributions (cont.)

Problems for further study:
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Problems for further study:

Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?
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OS from BV and TV t
Distributions (cont.)

Problems for further study:

Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MV tν?
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OS from BV and TV t
Distributions (cont.)

Problems for further study:

Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MV tν?

Can we do this work more generally in terms
of elliptically contoured distributions, for
example?
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