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Order Statistics

mlet X, -, X, benindependent identically distributed
(IID) random variables from a poplin. with cumulative
distribution function (cdf) F'(x) and an absolutely
continuous probability density function (pdf) f(x).
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Order Statistics

mlet X, -, X, benindependent identically distributed
(IID) random variables from a poplin. with cumulative
distribution function (cdf) F'(x) and an absolutely
continuous probability density function (pdf) f(x).

m If we arrange these X;’s in increasing order of
magnitude, we obtain the so-called order statistics,
denoted by

Xl:n S X2:n S T S Xn:na

which are clearly dependent.
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Order Statistics (cont.)

m Using multinomial argument, we readily have for

r=1---,n

Pr(z < Xy <z +d2)
T (- 1)7(!71 —r)! {F(z)} ' {F(z +6z) — F(x)}

x {1 — F(z+dx)}"""+ O ((0z)7) .




Order Statistics (cont.)

m Using multinomial argument, we readily have for

r=1---,n

Pr(z < Xy <z +d2)
T (- 1)7(!n —7)! {F(z)} ' {F(z +éz) — F(z)}

x {1 —F(z+dx)}""" 4+ O ((62)°) .

®m From this, we obtain the pdf of X,.,, as (for r € R)

n!

Fral®) = ey F@Y 7 1= F@)™™ f(a)




m Similarly, we obtain the joint pdf of (X..,, X,.,) as (for
l1<r<s<nandzxz <y)

n!

Jrsin(@:y) - = (r—l)!(s—r—l)!(n—s)!{F(x)}r_ /(@)

x{Fy) — F(2)}* " {1 = F(y)}" " f(y).




Order Statistics (cont.)

m Similarly, we obtain the joint pdf of (X..,, X,.,) as (for
l1<r<s<nandzx <uy)

n!

Jrsin(@:y) - = (T—l)!(s—r—l)!(n—s)!{F(x)}r_ /(@)

x{Fy) = F(2)y" " {1 = F(y)}" " f(y).

®m From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.
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m Similarly, we obtain the joint pdf of (X..,, X,.,) as (for
l1<r<s<nandzx <uy)

n!

Jrsin(@:y) - = (T—l)!(s—r—l)!(n—s)!{F(x)}r_ /(@)

x{Fy) = F(2)y" " {1 = F(y)}" " f(y).

®m From the pdf and joint pdf, we can derive, for example,
means, variances and covariances of order statistics,
and also study their dependence structure.

®m The area of order statistics has a long and rich history,
and a very vast literature.
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Order Statistics (cont.)

m Some key references are the books by



Order Statistics (cont.)

m Some key references are the books by

H.A. David (1970, 1981)

B. Arnold & N. Balakrishnan (1989)

N. Balakrishnan & A.C. Cohen (1991)

B. Arnold, N. Balakrishnan & H.N. Nagaraja (1992)
N. Balakrishnan & C.R. Rao (1998 a,b)

H.A. David & H.N. Nagaraja (2003)
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Order Statistics (cont.)

m Some key references are the books by

H.A. David (1970, 1981)
B. Arnold & N. Balakrishnan (1989)
N. Balakrishnan & A.C. Cohen (1991)
B. Arnold, N. Balakrishnan & H.N. Nagaraja (1992)
N. Balakrishnan & C.R. Rao (1998 a,b)
H.A. David & H.N. Nagaraja (2003)
m However, most of the literature on order statistics have

focused on the independent case, and very little on the
dependent case.
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Skew-normal Distribution

m The skew-normal distribution has pdf
p(r) =20 \r)o(r), xe€ R, XN€ER,

where ¢(-) and ®(-) are standard normal pdf
and cdf, respectively.
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where ¢(-) and ®(-) are standard normal pdf
and cdf, respectively.

= Note that



Skew-normal Distribution

m The skew-normal distribution has pdf
p(x) =2P(\x)p(x), € R, MeER,

where ¢(-) and ®(-) are standard normal pdf
and cdf, respectively.

m Note that

A € R Is a shape parameter;
A = 0 corresponds to std. normal case;
A — oo corresponds to half normal case;

Location and scale parameters can be
iIntroduced into the model as well.



Skew-Normal Distribution
(cont.)

m Azzalini’'s (1985, Scand. J. Statist.) article
generated a lot of work on this family.
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Skew-Normal Distribution
(cont.)

m Azzalini’'s (1985, Scand. J. Statist.) article
generated a lot of work on this family.

m This distribution was, however, present either
explicitly or implicitly in the early works of
Birnbaum (1950)
Nelson (1964)
Weinstein (1964)
O’'Hagan & Leonard (1976)



Skew-Normal Distribution
(cont.)

m Azzalini’'s (1985, Scand. J. Statist.) article
generated a lot of work on this family.

m This distribution was, however, present either
explicitly or implicitly in the early works of
Birnbaum (1950)
Nelson (1964)
Weinstein (1964)
O’'Hagan & Leonard (1976)
m [nterpretation through hidden truncation /

selective reporting Is due to Arnold & Beaver
(2002, Test) for univariate/multivariate case. -



Skew-Normal Distribution
(cont.)

New connection to OS
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Skew-Normal Distribution
(cont.)

New connection to OS
mForn=20,1,2, ---, consider the integral

L.(\) = / T @0 él) do

m Clearly, L,()\) = 1Y\ € R.



Skew-Normal Distribution
(cont.)

New connection to OS
mForn=20,1,2,--- ., consider the integral

L,(\) = /OO {d(\x)}" o(x) dx.

m Clearly, L,()\) = 1Y\ € R.
m Furthermore,

/Z {CI)()\x) _ %}%H b(x) dz = 0

since the integrand is an odd function of z,
we obtain:



Skew-Normal Distribution

2n+1

1L (2n+1
Lop11(A) = Z(_l)zﬂ_-( ; )LQn—I—li()\)a A€ R,

1=1

forn=0,1,2,...



Skew-Normal Distribution

2n+1

1L (2n+1
Lop11(A) = Z(_l)zﬂ_-( ; >L2n—|—1i()\)7 A€ R,

1=1

forn=0,1,2,...

m For n = 0, we simply obtain

L)) = /OO d(\x) &) do — %LO()\) _ % \e R,



Skew-Normal Distribution

2n+1

1L (2n+1
Lop11(A) = Z(_l)zﬂ_-( ; >L2n—|—1i()\)7 A€ R,

i=1 A
forn=0,1,2,...
m For n = 0, we simply obtain
L)) = /Z d(\x) &) do — %LO()\) _ % NeR

which leads to the skew-normal density
o1(z;A) =2 d(\x)p(z), z€R, MN€ER.



Skew-Normal Distribution
(cont.)




Skew-Normal Distribution
(cont.)

we find



Skew-Normal Distribution
(cont.)

mFrom
Lo(\) = / (B2 ¢() dr, AER,

we find

dL (M)
d\

) / T2 d() 6(\) 6(x) da

= l/icb(Ax)x exp{—%x2(1—|—)\2)} dx

.
))
(1 4+ A2)V/1+2X2




Skew-Normal Distribution
(cont.)

mFrom
Lo(\) = / (D)2 ¢(x) dr, AeER

we find

dLy(\)
dA

_ 9 / T2 d() 6(\) 6(x) da

= l/icb(Ax)x exp{—%x2(1+)\2)} dx

.
))
m(1+ A2)V1 + 222
m Solving this differential equation, we obtain




Skew-Normal Distribution
(cont.)

1
Ly(A) = = tan 'vV1+2)2, N€ER,

T



Skew-Normal Distribution
(cont.)

1
~ tan 'V14+2X2, M€ R,
.

which leads to another skew-normal density



Skew-Normal Distribution

Ly(A) = 2 tan' VIT 2N, )€ R,

T

which leads to another skew-normal density

-
tan 1 v/ 1 + 2)\2

po(T; A) = {®(\x)Y é(z), v € R,\ € R.



Skew-Normal Distribution

1
Ly(A) = = tan 'vV1+2)2, N€ER,

T

which leads to another skew-normal density

7

2
tan~! /1 + 2\ 12(A2)}"d(2), v € R, A € R.

pa(T; ) =

Remark 1: Interestingly, this family also
iIncludes standard normal (when A = 0) and
the half normal (when \ — oo) distributions,
just as o (x; ) does.




Skew-Normal Distribution
(cont.)



Skew-Normal Distribution
(cont.)

Ls() = STa() = {1 + 5Lo(N)
3

1
= — tan 'V1+2X2 -, NER,
2T 4




Skew-Normal Distribution
(cont.)

m Next, setting » = 1 in the relation, we get

3 3 1
— il tan_l\/1+2)\2—1, AE R,
2T 4

which leads to another skew-normal density



Skew-Normal Distribution
(cont.)

m Next, setting » = 1 in the relation, we get

3 3 1
L3(A) = 5L2(N) = - Li(A) + 5 Lo(N)
2 4 8
1
— il tan T V1+2X2— =, A€ R,
2T 4
which leads to another skew-normal density

1

3
2 tan—t /14 2)2 — L {®(Az)}" ¢(x), z € R.

p3(r; A) =




Skew-Normal Distribution
(cont.)

m Next, setting n = 1 in the relation, we get

3 3 1
L3(A) = 5L2(N) = - Li(A) + 5 Lo(N)
2 4 8
1
— il tan T V1+2X2— =, A€ R,
2T 4
which leads to another skew-normal density

1

3
= tan~t /1 4+ 2A% — & {e(A2)}" o(x), v € R

p3(T; A) =

Remark 2: Interestingly, this family also
iIncludes standard normal (when A = 0) and
the half normal (when \ — oo) distributions,
just as o (z; A) and v (z; M) do.




Skew-Normal Distribution
(cont.)

Remark 3: Evidently, in the special case
when )\ = 1, the densities ¢ (z; \), p(x; \9)
and p;(x; \) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N (0, 1) distribution.
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Remark 3: Evidently, in the special case
when )\ = 1, the densities ¢ (z; \), p(x; \9)
and p;(x; \) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N (0, 1) distribution.

Remark 4: In addition, the integral L,,()\) is
also involved in the means of OS from N (0, 1)
distribution. For example, with 44,,.,,, denoting
the mean of the largest OS in a sample of
size m from N (0, 1), we have



Skew-Normal Distribution
(cont.)

Remark 3: Evidently, in the special case
when )\ = 1, the densities ¢ (z; \), p(x; \9)
and p;(x; \) become the densities of the
largest OS in samples of size 2, 3 and 4,
respectively, from N (0, 1) distribution.

Remark 4: In addition, the integral L,,()\) is
also involved in the means of OS from N (0, 1)
distribution. For example, with 44,,.,,, denoting
the mean of the largest OS in a sample of
size m from N (0, 1), we have

Ly 3Ly(1)  6Ly(1)  10Ls(1)
H2.:2 = \/? H3:3 — ﬁ , H4:4 = ﬁ , U555 = ﬁ _p.;5,z




Skew-Normal Distribution
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Natural questions that arise:
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Skew-Normal Distribution
(cont.)

Natural questions that arise:

m First, we could consider a general
skew-normal family

p(x; A, p) = C(A\,p) {2(Az)} d(2), z € R,A € R p>0.
How about the normalizing constant?
How much flexibility is in this family?
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Skew-Normal Distribution
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Natural questions that arise:

m First, we could consider a general
skew-normal family

o(x; \,p) =C(\,p) {PN\x)}Y o(x), x € R,LA€E R, p>0.
How about the normalizing constant?
How much flexibility is in this family?

Can we develop inference for this model?

m Next, can we have a similar skewed look at
OS from BV and MV normal distributions?



Skew-Normal Distribution
(cont.)

Natural questions that arise:

m First, we could consider a general
skew-normal family

o(x: A, p) = CO\,p) {®(A\2) é(x), 2 € RN E R, p> 0.
How about the normalizing constant?
How much flexibility is in this family?

Can we develop inference for this model?

m Next, can we have a similar skewed look at
OS from BV and MV normal distributions?

m How about other distributions?






OS from BVN Distribution

m et (Xl,XQ) i BV N (,ul,,ug,O'%,O'%,p).
mlet W, < Ws, be the OS from (X, X,).



OS from BVN Distribution
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OS from BVN Distribution

m et (Xl,XQ) i BV N (,ul,,ug,a%,ag,p).
mlet W, < Ws, be the OS from (X, X,).

m This bivariate case has been discussed by
many, including
S.S. Gupta and K.C.S. Pillai (1965)
A.P. Basu and J.K. Ghosh (1978)
H.N. Nagaraja (1982)
N. Balakrishnan (1993)
M. Cain (1994)
M. Cain and E. Pan (1995)




Generalized Skew-Normal
Distribution

= A variable 7, ,, , IS said to have a

generalized skew-normal distribution,
denoted by GSN (A1, Ao, p), If



Generalized Skew-Normal
Distribution

= A variable 7, ,, , IS said to have a

generalized skew-normal distribution,
denoted by GSN (A1, Ao, p), If

Z)\1,>\2,p < X ‘ (Yi < MX, Yy < )\QX), A1, Ay € R, ’,O‘ < 1,

where X ~ N(0, 1) independently of
(Y1,Ys) ~ BVN(0,0,1,1, p).
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Generalized Skew-Normal
Distribution

= A variable 7, ,, , IS said to have a

generalized skew-normal distribution,
denoted by GSN (A1, Ao, p), If

Z)\1,>\2,p 4 X ‘ (Yi < MX, Yy < )\QX), A1, Ay € R, ’p‘ < 1,
where X ~ N(0, 1) independently of
(Y1,Y2) ~ BVN(0,0,1,1,p).

= [t should be mentioned that 7, ,, , belongs to

SUN;5(0,0,1,Q*) [Arellano-Valle & Azzalini (2006)]
C'S N, 5 [Farias, Molina & A.K. Gupta (2004)]



Generalized Skew-Normal

m [t can shown that the pdf of Z,, ,, , IS



Generalized Skew-Normal
Distribution (cont.)

m [t can shown that the pdf of Z,, ,, , IS
SO(Z;Ah)Q?p) — C(A17)\27p) ¢(Z) (I)(AlZ:?)QZ;p)? S R7

with A\, A\ € R, [p| < 1, and ®(-,-; p) denoting
the cdf of BV N(0,0,1,1, p).



Generalized Skew-Normal
Distribution (cont.)

m [t can shown that the pdf of Z), ), , IS
SD(Z;Ah)Q?p) — C(A17)\27p) ¢(Z) (I)(A127>\2Z;p)7 S R7

with A\, \s € R, |[p| < 1, and ®(-, -; p) denoting
the cdf of BV N(0,0,1,1, p).

m For determining c(\q, Ao, p), we note that

1 1

At A, p) = =
C( 1 2710) @()\1,>\27/0) P(}/l < )\1X,}/2 < )\QX)7

where X ~ N (0, 1) independently of
(Yi> YPZ) ™~ BVN(Oa 0,1, 1, /0)



Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have




Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have
a()\l,)\g,p) = P(Yi < )\1X,Yé < )\QX)

_ i cos ! —(p+ A A2) ,
27 VIFX/1T+X2)
[Kotz, Balakrishnan and Johnson (2000)].




Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have
CL()\l,)\Q,p) — P(Yi < )\1X,Yé < )\2X)

_ i cos . _(/0 T >\1)\2) ,
om VIFAN/1+M )
[Kotz, Balakrishnan and Johnson (2000)].
= The generalized skew-normal pdf is then




Generalized Skew-Normal
Distribution (cont.)

Lemma 1: We have
CL()\l,)\Q,p) — P(Yi < )\1X,Yé < )\2X)

_ i cos . _(/0 T >\1)\2) ,
om VIFAN/1+M )
[Kotz, Balakrishnan and Johnson (2000)].
= The generalized skew-normal pdf is then

2T

QO(Z, )\17 )\27 /0) —
—1 —(ptA1A2)
COS (\/1+A%\/1+/\§>

for z, \i, Ao € R, |p| < 1.

O(2)P(A1z, Aoz p)




Generalized Skew-Normal

mlet (-, -;0) denote cdf of BV N(0,0,1,1,0),
and ®(-; ¢) denote cdf of SN (6).



Generalized Skew-Normal
Distribution (cont.)

mlet (-, -;0) denote cdf of BV N(0,0,1,1,0),
and ®(-; ¢) denote cdf of SN (6).

Lemma 2: We then have




Generalized Skew-Normal
Distribution (cont.)

mlet (-, -;0) denote cdf of BV N(0,0,1,1,0),
and ®(-; ¢) denote cdf of SN (6).

Lemma 2: We then have

$(0,0;0) = 2—008_1(—5),
70
O (v, 0;0) ®(0, yz; ) 1@( - )
x. 0; — r:0) = — X :
77 ) 777 2 /Y 7\/1_—52
1
Pnz,122;0) = S 1@Mzim) + P(ezine) — Iny)},

where /(a) =0ifa > 0and 1 if a < 0,

T
! 1 —462 \1 P 1 —62 \ e L



Generalized Skew-Normal
Distribution (cont.)

Theorem 1:If M(t; A1, o, p) is the MGF of
Z>\1,>\2,,0 ~ GSN()\l, A9, p), then




Generalized Skew-Normal
Distribution (cont.)

Theorem 1:If M(t; A1, o, p) is the MGF of
Z>\1,>\2,,0 ~ GSN()\l, A9, p), then

V1A /1472

)\1t )\275 ,0‘|'>\1)\2
VI+A \/1+)\2 VIFX/T+M2 )

M(t;)\h)\Qap) —




Generalized Skew-Normal
Distribution (cont.)

Theorem 1:If M(t; A1, o, p) is the MGF of
Z>\1,>\2,,0 ~ GSN()\l, A9, p), then

2
Mt M\, Aoy p) = a e’/

1 —(pt+A1)2)
cos (R )
% & ( )\1t )\275 P + )\1)\2 )

JIEZ JTF2 it /1t

Corollary 1: Theorem 1 yields, for example,
/2

A1 Ao
+ .
cos—1 ( —(p+A1)2) ) { V1I+A 1+ A }

VI1+AZ /1402

E [Z>\1 ,>\2,p] —




OS from TVN Distribution

mlet (W, Wy, W3) ~TVIN(0,X), where




OS from TVN Distribution

mlet (W, Wy, W3) ~TVIN(0,X), where

2
/ 01 P1201072 /0130103\

_ 2
2= P120102 09 P230203

2
\ P130103 P230203 O3 )

IS a positive definite matrix.
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mlet (W, Wy, W3) ~TVIN(0,X), where

2
/ 01 P120102 pP130103 \

_ 2
2= P120102 09 230203

2
\ P130103 230203 O3 )

IS a positive definite matrix.

mlet V5 = min(Wl, WQ, Wg) < Wo.g < W33 =
max (W7, Wy, W3) denote the order statistics
from (W5, Wy, W3).



OS from TVN Distribution

mlet (W, Wy, W3) ~TVIN(0,X), where

2
/ 01 P120102 pP130103 \

_ 2
2= P120102 09 230203

2
\ P130103 230203 O3 )

IS a positive definite matrix.

mlet V5 = min(Wl, WQ, Wg) < Wo.g < W33 =
max (17, W, W3) denote the order statistics
from (W5, Wy, W3).

mlLet F;(t;>) denote the cdf of IV,.3,7 = 1,2, 3.



OS from TVN Distribution
(cont.)

Theorem 2: The cdf of 5.5 IS the mixture




OS from TVN Distribution
(cont.)

Theorem 2: The cdf of 5.5 IS the mixture

F3(t;3) = a(61)® (0%; 91) + a(02)® (i;92> + a(03)® <—;93> :

02



OS from TVN Distribution

Theorem 2: The cdf of 5.5 IS the mixture

Fa(t5%) = a(00)® (101 ) +a(02)2 (162 ) +a(a)0 (504 )

01

where ®(-; 0) denotes the cdf of GSN(0),

1 A1A
a(>\17>\2710) _COS ( (p+ X 2) )’

VI+22 /1423

0_1 _ g1 _
0, — P12 5o — P13 P23 — P12P13
\/1 P2 \/1 P13 \/1_9%2\/1_9%3
_2 _ g2 _
p12 5o — P23 P13 — P12023
0, = :
\/1 Pl \/1 P33 \/1_9%2\/1_933

(3p13 £ — P23 p12 — P13023 )
03 )

\/1 Pis \/1 P33 \/1_933\/1_933



OS from TVN Distribution
(cont.)

Theorem 3: The mgf of 155 IS




OS from TVN Distribution
(cont.)

Theorem 3: The mgf of 155 IS

1— 1—
Ma(siE) = e/’ {CD<V 2p1233a1> +(I)< 2p1355a2>
1_
+<I>< / 2'0235;a3>},




OS from TVN Distribution

Theorem 3: The mgf of 155 IS
Ms(s:%) = e /2 {cb (Ws;oq) + O (WS;&g)
()

where ®(-;0) is the cdf of SN (#), and

1+ p12 — p13 — p23

a1 =

VA
0y — 1+ p13 — p12 — p23
p— \/Z Y
0y — 1+ p23 — p12 — p13
B VA
A = 6= {(1+p12)* + (1 +p13)° + (1 + p23)?}

+2 (p12p13 + p12p23 + p13p23) -



OS from TVN Distribution
(cont.)




OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E(Ws3) = 2\/—{\/1—p1z+\/1—m3+\/1—,023}

and



OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E(Ws3) = 2\/—{\/1—p1z+\/1—m3+\/1—,023}

and
Var (Ws3) =1+ 2—\/2 — E* (Ws.3) .

7



OS from TVN Distribution
(cont.)

Corollary 2: Theorem 3 yields, for example,

E(Ws3) = 2\/—{\/1—012+\/1—P13+\/1—,023}

and
VCLT (Wg;g) =1 —+ 2—\/2 — E2 (Wg;g) .

T

Remark 5: Similar mixture forms can be
derived for the cdf of 11/1.5 and 5.5, and from
them explicit expressions for their mgf,

moments, etc.
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OS from TVN Distribution
(cont.)

Problems for further study:

m Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

m How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MVN?
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observations from MV N(u, ), where

po=(p,...,pmp)" and ¥ = ((0)).
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mlet X, = (XM',...,XPZ')T, 1 =1,...,n, be Iid
observations from MV N(u, ), where
po=(p,...,pmp)" and ¥ = ((04)).

mlet P={iy,...,1,} (m > 1) be a partition of
{1,...,p}, and () its complementary partition.

mletC = (cy,...,c,)" be avector of non-zero
constants.



OS Induced by Linear
Functions

mlet X, = (Xy;,..., X,))!, i=1,...,n, beiid
observations from MV N(u, ), where
po=(p,...,pmp)" and ¥ = ((04)).

mlet P ={iy,...,4,} (m > 1) be a partition of
{1,...,p}, and () its complementary partition.

mletC = (cy,...,c,)" be avector of non-zero
constants.

m Further, let us definefor j = 1,... . n,

Xj :ZCZ' Xz'j :Cg Xj, Y? :ZCZ' Xz'j :Cg Xj.

1€EP 1€Q)
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OS Induced by Linear
Functions (cont.)

Lemma 3: Evidently,

px = E(X;)=Cpp,
wy = E(Y;)=C, n,
oy = Var(X;)=C}% X Chp,
oy = Var(Y;) = CT > Co,
oxy = Cov(X,Y;)=ChX Co,
) Oxy _ C£ » Co

X0y (CE 2 Cr)(Ch % Co)
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m Now, let
Sj :XJ—FY} :C£X]—|—CSXJ :CTXj

fory =1,... n.



OS Induced by Linear
Functions (cont.)

m Now, let
Sj :X]+Y7 :C£X3—|—CgX] :CTXj

fory =1,... n.

mlet 5., < 5,, <-.-<S,. denote the order
statistics of S;’s.



OS Induced by Linear
Functions (cont.)

m Now, let
Sj :XJ—FY; :C£X3—|—C'5XJ :CTXj

fory =1,... n.

mlet 5, <95, <.-.<5,., denote the order
statistics of S;’s.

mLet X ., be the £-th induced multivariate
order statistic: I1.e.,

Xm = X; whenever S, =5;.



OS Induced by Linear

Example 1: While analyzing extreme lake

levels in hydrology, the annual maximum level
at a location in the lake Is a combination of
the dally water level averaged over the entire
lake and the up surge in local water levels
due to wind effects at that site [ Song,
Buchberger & Deddens (1992)].




OS Induced by Linear
Functions (cont.)

Example 1: While analyzing extreme lake

levels in hydrology, the annual maximum level
at a location in the lake Is a combination of
the dally water level averaged over the entire
lake and the up surge in local water levels
due to wind effects at that site [ Song,
Buchberger & Deddens (1992)].

Example 2: While evaluating the performance

of students in a course, the final grade may
often be a weighted average of the scores In
mid-term tests and the final examination.
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OS Induced by Linear
Functions (cont.)

Theorem 4: We have

Consequently, we readily obtain

CLxCp + CL13Cq }

E(X[kn]) — C% M+ Okin 3
JCEECp + ChRCq +2CERCq

where «;..,, 1S the mean of the k-th OS from a
sample of size n from N(0, 1).



OS Induced by Linear
Functions (cont.)

Theorem 4: We have

Consequently, we readily obtain

CLxCp + CL13Cq }

E(X[kn]) — C% K+ Qi 3
JCEECp + ChRCq +2CERCq

where «;..,, 1S the mean of the k-th OS from a
sample of size n from N(0, 1).

Similar expressions can be derived for
Var(Xy., ) and other moments.
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OS Induced by Linear
Functions (cont.)

m By choosing the partitions P and () suitably, we have
the following results for within a concomitant OS.

Theorem 5: For k= 1,...,n, we obtain

Z;_l CrOir :
E(Xz[kn]) = Wit Ok — ,1=1,..., b,
\/25:1 Dy CrCsOrs

Var(X,n) TR U o> L L G
ar ilk:n — 041 — — Mk,k:n y L= 1,..., p,
i >0 Sy eresors
S 3 eresoiroys }
Cov(X;ihmls Xithen = o0ii— (1= Brkmn s=1 cur= ,
Xy X)) = 0 == ) S Sy ercsors

1 <1<y <p,

where 3. 1., 1S the variance of the £-th OS
from a sample of size n from N (0, 1).

— p. 33/
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OS Induced by Linear
Functions (cont.)

m By choosing the partitions P and () suitably, we have
the following results for between concomitant OS.

Theorem 6: For 1 < k < ¢ < n, we obtain

( Pt C0ir)”
COU(Xi[k:n]aXi[E:n]) — 6/6,6:71 )

—1 Zr 1 €rCsOrs
1=1,...,p,
Zr CrCsO04r0js
CO’U( ilk: n]an[E:n])) — 6/6,6:71) { 1 : / )

—1 Zr 1 6rCsOrs
1§2<J§n

where 3. ., IS covariance between £-th and
/-th OS from a sample of size n from N (0, 1).

—p. 34/
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Corollary 3: Var(Xy,., ) and Var(Y}., ) can
be rewritten as




OS Induced by Linear

Corollary 3: Var(Xy,., ) and Var(Y}., ) can
be rewritten as

Var(X[k:n]) = 03( — (1 - 5k,k:n) )

( (CLJ%( + pr')(Uy)2
A Y

Var(Yig,) = oy — (1= Brn) <

A

( (5032/ + CL,OU)(Uy)Z }

where A = a20§( + bza%/ + 2abpoxoy.



OS Induced by Linear
Functions (cont.)

Corollary 3: Var(Xy.,) and Var(Y., ) can
be rewritten as

" (402 + bpoxoy °
VaT(X[k:n]) — O-g( - (1 - ﬁk,k:n) < ( d A ) )

[ (bo2 + apoxoy :
Var'a<}/[k:n]) — 012/ - (1 - ﬁk,k:n) ) ( r A ) )

where A = a?0% + b*oi + 2abpo xoy.
= Now, since (3, 5., > 0 [Bickel (1967)]
and 2?21 Bikn=1Torl <k<n
[Arnold, Balakrishnan & Nagaraja (1992)],
we have 0 < Gy ., < 1.



OS Induced by Linear

m Consequently, we observe that

Var(Xp.n) <oy and Var(Yj.) < oy

forall k. =1,... n.



OS Induced by Linear
Functions (cont.)

m Consequently, we observe that

Var(Xp.n) <oy and Var(Yj.) < oy

forall k. =1,... n.

m Using a similar argument, it can be shown
that

V&T(Xz[kn]) < Oy

fort=1,....pandallk =1,... n.
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OSfromBVand TV ¢
Distributions

m Arellano-Valle and Azzalini (2006) presented
unified multivariate skew-elliptical distribution
through conditional distributions.

m A special case of this distribution is a
generalized skew-t,, distribution.

= Now, using skew-¢,, and generalized skew-t,
distributions, distributions and properties of
OS from BV and TV ¢, distributions can be
studied.
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Problems for further study:

m Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

m How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MV ¢,?



OSfromBVand TV ¢
Distributions (cont.)

Problems for further study:

m Can we make use of these results concerning
distributions and moments of OS to develop
some efficient inferential methods?

m How far can these results be generalized to
obtain such explicit expressions for the case
of OS from MV ¢,?

m Can we do this work more generally in terms
of elliptically contoured distributions, for
example?
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