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2Classical Wishart distributions.

Let V be a finite set and let PD(V ) denote the open convex cone of all positive definite

V × V matrices. Let Σ ∈ PD(V ) and λ > V−1
2
∗. The classical Wishart distribution

WΣ,λ on PD(V ) with shape parameter λ and expectation Σ is defined by

(0.1) dWΣ,λ(S) :=
π

V (1−V )
4 λλV |S|λ−

V +1
2

∏
(Γ(λ− i−1

2
)|i = 1, · · · , V )|Σ|λ

exp{−λTr(Σ−1S)}dS.

The parameter Σ deserves its name since the expectation E(WΣ,λ) = Σ.

The statistical model (WΣ,λ ∈ P(S(V ))|Σ ∈ PD(V )), where P(S(V )) denotes the

set of probability measures on the vector space S(V ) of symmetric V × V matrices, is

well-known to be a full regular exponential family in its expectation parametrization.

The corresponding natural parameter is then ∆ := λΣ−1 ∈ PD(V ) and with this

parameter (0.1), in this parametrization denoted W∆,λ, takes the form

(0.2) dW∆,λ(S) :=
π

V (1−V )
4 |∆|λ|S|λ−

V +1
2

∏
(Γ(λ− i−1

2
)|i = 1, · · · , V )

exp{−Tr(∆S)}dS.

∗The notation V of a finite set also denote the cardinality of the set



3Context and motivation.

UG ADG HOM TADG

DUG TDUG HTAG DTADG

UG: Undirected Graphs, ADG: Acyclic directed graphs, HOM: Homogeneous cones, TADG:

Transitive ADG, DUG: Decomposable UG, TDUG: DUG without four chains, HTADG:

TADG with transitive action, and DTADG: TADG with a least one diamond pattern.



4Notation

Let v1, · · · , vV be a numbering of the elements of V . As it is customary the set V is

then identified with its numbering, i.e., vi is just denoted by i, i = 1, · · · , V .

Set < i >:= {1, · · · , i− 1}. Note that < 1 >= ∅ and that < 2 >= {1}.

For Σ ∈ PD(V ) and i = 1, · · · , V , let Σ[i], Σ<i>, Σ[i>, and Σ<i] denote the

{i} × {i}, < i > × < i >, the {i}× < i >, and the < i > ×{i} sub-matrices of

Σ ∈ PD(V ), respectively, and define

Σ[i]• = Σ[i] − Σ[i>(Σ<i>)−1Σ<i] > 0.

The rational functions Σ[i]• of the entries of the matrix Σ can also be defined through the

unique decomposition Σ = TDT t, where T is a lower triangular matrix with all diagonal

elements equal to 1 and D is a diagonal matrix with positive diagonal elements, since

Dii = Σ[i]•, i = 1, · · · , V .

Thus corresponding to the opposite ordering of the elements of V we have the unique

decomposition ∆ = T tDT , ∆ ∈ PD(V ), where again T is a lower triangular matrix

with all diagonal elements equal to 1 and D is a diagonal matrix with positive diagonal

elements. We can then similarly define ∆[i]◦ := Dii, i = 1, · · · , V .



5Matrix Picture.

Σ =

Σ<i>

Σ[i>

Σ<i]

Σ[i]

1

2
...
...
...
...

...

...

...

i− 1

i

i + 1

V

1 2. . .. . .. . . . . .. . .i− 1 i i + 1 V

Σ[i]• := Σ[i] − Σ[i>Σ−1
<i>Σ<i]



6Illustration of decomposition.

Illustration of Σ = TDT t in a case where V = 8: .

·

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1

·

+ 0 0 0 0 0 0 0

0 + 0 0 0 0 0 0

0 0 + 0 0 0 0 0

0 0 0 + 0 0 0 0

0 0 0 0 + 0 0 0

0 0 0 0 0 + 0 0

0 0 0 0 0 0 + 0

0 0 0 0 0 0 0 +

1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1



7Rietz integral.

The classical Rietz integral, defined for any λ ≡ (λi|i = 1, · · · , V ) ∈ RV , is†

∫

PD(V )

∏
((S[i]•)

λi−
V +1

2 |i = 1, · · · , V ) exp{−Tr(∆S)}dS,

convergent if and only if

λi >
i− 1

2
, i = 1, · · · , V,

and in this case with the value

π
V (V−1)

4

∏
(
Γ(λi −

i−1
2

)

(∆[i]◦)λi
|i = 1, · · · , V ).

†In fact only defined for ∆ = 1V .



8Rietz distributions.

We can thus define the distributions on PD(V ) as follows:

(0.3)

dR∆,λ(S) := π
V (1−V )

4

∏
(
(∆[i]◦)

λi(S[i]•)
λi−

V +1
2

Γ(λi −
i−1
2

)
|i = 1, · · · , V ) exp{−Tr(∆S)}dS.

Definition 0.1. The probability R∆,λ is called the classical Rietz distribution on

PD(V ) wrt. the ordering 1, · · · , V of the elements of V and with shape parame-

ter λ ≡ (λi|i = 1, · · · , V ) and natural parameter ∆.

Note when λi does not depend on i ∈ V we regain the Wishart distribution above.



9Expectation of Rietz distributions.

For the numbering 1, · · · , V of the elements of V we can for any Σ ∈ PD(V ) and any

λ ≡ (λi|i = 1, · · · , V ) ∈ RV
+ define

Σ−λ := (T t)−1Diag( λi
Σ[i]•
|i = 1, · · · , V )T−1,

where Σ = TDiag(Σ[i]•|i = 1, · · · , V )T t with T being lower triangular with 1’s in

the diagonal.

In the case where λi = µ, independent of i = 1, · · · , V we get Σ−λ = µΣ−1. Note

that Σ−λ = ∆ ∈ PD(V ) has a unique solution in Σ ∈ PD(V ) denoted Σ = ∆λ−

(opposite ordering).

By a relative simple calculation or as a special case of a later result it follows that

E(R∆,λ) = Σ := ∆−λ.

Thus if the natural parameter ∆ ∈ PD(V ) is replaced by the expectation parameter

Σ ∈ PD(V ) we obtain

(0.4)

dRΣ,λ(S) := π
V (1−V )

4

∏
(

λ
λi
i (S[i]•)

λi−
V +1

2

Γ(λi −
i−1
2

)(Σ[i]•)λi
|i = 1, · · · , V ) exp{−Tr(Σ−λS)}dS.



10Acyclic Mixed Graphs (AMG)

Let V ≡ (V, E) be an acyclic mixed graph (AMG). The equivalence relation ∼ on the

vertex set V given by v1 ∼ v2 iff v1 = v2 or v1 and v2 are connected by an undirected

path, defines the set of equivalence classes V/ ∼ called the set of boxes of the AMG. Each

box B ∈ V/ ∼ thus corresponds to a subset, denoted [B], of V and the by [B] induced

graph is an undirected graph, called the [B] box graph. We shall assume that the AMG

has two important properties

(1) All box graphs are complete, and

(2) The AMG has no triplexes. (i.e., no flags •−• ← • and no immoralities • → • ← •)

The skeleton of V is given by U(V) ≡ U := (V, E∪Eo), where (v1, v2)
o := (v2, v1),

(v1, v2) ∈ V 2. Since V has no triplexes U is decomposable.

Let B ∈ V/ ∼ and let v ∈ [B]. The parents of v, the subset

paV(v) ≡ pa(v) := {v′ ∈ V |v′→V v},

is independent of v ∈ [B] and thus we can define < B >:= pa(v), v ∈ [B].



11Multivariate normal distribution and Markov properties.

The AMP Markov properties for V are equivalent to the Markov properties of its skeleton

U .

Consider centered regular normal distributions N(0, Σ) on RV , Σ ∈ PD(V ). Thus

the Markov properties given by the AMG V or equivalently U impose restrictions on the

variance matrix Σ or equivalently on the precision matrix ∆ := Σ−1. For our special type

of AMG V these restriction are easily expressed in terms of ∆:



12Variance and precision.

Let U ≡ (V, F ) be an undirected graph with vertex set V and let S(V ) denote the vector

space of symmetric V × V matrices S ≡ (Suv|(u, v) ∈ V ×2).

S(U) := {S ∈ S(V )|∀u, v ∈ V : with u 6= v and (u, v) 6∈ F : Suv = 0}.

Thus we have the projection mapping pU ≡ p

p : S(V ) → S(U)

S → p(S),

where

p(S)uv :=

{
Suv if (u, v) ∈ F or u = v

0 if (u, v) 6∈ F and u 6= v
.

Set PD0(U) := S(U) ∩ PD(V ). It is well-known that N(0, Σ) satisfies the Markov

properties given by U if and only if ∆ = Σ−1 ∈ PD0(U). Set PD(U) := PD0(U)−1.

Then this subset PD(U) ⊆ PD(V ) can similarly be described by Σ ∈ PD(U) if and

only if N(0, Σ) satisfies the Markov properties given by U .

Also set

P(U) := {S ∈ S(U)|SC ∈ PD(C) ∀ cliques C ⊂ V }

where SC denote the C × C submatrix of S.



13Matrix isomorphisms.

Proposition 0.1. The mapping

(0.5)

PD(U) → P(U)

S → p(S)

Ŝ ← S

is a well defined one-to-one correspondence.

The open convex cones P(U) and PD0(U) are dual to each other through the iso-

morphism (of open convex cones)

P(U) ↔ (PD0(U))∗

S → (T → Tr(ST ))

(S → Tr(TS)) ← T.

Proof. The two results are well known and proved by induction after the number of cliques

in U . �



14The standard inverse mappings

The inverse mappings

P(U) ↔ PD0(U)

S → (Ŝ)−1 =: S−1

p(T−1) ← T.

defines a one-to-one correspondence.

Nevertheless, we shall make use of a special variation of this inverse mapping depending on

the representation of U as an AMG V with the properties described above:

Let λ ≡ (λB|B ∈ V/ ∼) ∈ R
V/∼
+ . For S ∈ P(U) the positive definite matrix

Ŝ ∈ PD(U) has a unique decomposition of the form Ŝ = TDT t, where T and D

are block matrices according to the decomposition V = ∪̇([B]|B ∈ V/ ∼), i.e.,

T ≡ (TBB′|(B, B′) ∈ (V/ ∼)×2) and D ≡ (DBB′|(B, B′) ∈ (V/ ∼)×2),

satisfying that DBB ∈ PD(B), B ∈ V/ ∼, DBB′ = 0 for B, B′ ∈ V/ ∼ with

B 6= B′, i.e., D ≡ Diag(DBB|B ∈ V/ ∼) is block diagonal with positive definite

entries in the diagonal, TBB = 1B, B ∈ V/ ∼, TBB′ = 0, B, B′ ∈ V/ ∼ when there

is not partly directed path from B to B′, i.e., T is ”lower block triangular” with identity

matrices in the diagonal and possible extra zeroes.



15Illustration of the decomposition.

Illustration of Σ̂ = TDT t in a case where V/ ∼= 4: .

·

1 0 0 0

1 0 0

1 0

1

·

+ 0 0 0

0 + 0 0

0 0 + 0

0 0 0 +

1

0 1

0 0 1

0 0 0 1



16λ-inverse mappings.

The λ-inverse mappings

P(U) ↔ PD0(U)

S = p(TDiag(DBB|B ∈ V/ ∼)T t) → S−λ :=

(T t)−1Diag(λBD−1
BB|B ∈ V/ ∼)T−1)

p(U−1Diag(λBE−1
BB|B ∈ V/ ∼)(U t)−1) ← D = U tDiag(EBB|B ∈ V/ ∼)U

=: Dλ−

For Σ ∈ P(U) we denote the diagonal matrices DBB of D in the unique decomposition

Σ = p(TDT ) given above by Σ[B]• = DBB, B ∈ V/ ∼. Analogous for ∆ ∈

PD0(U) we set ∆[B]◦ := DBB, B ∈ V/ ∼, when ∆ = T tDT . thus we have

(Σ−λ)[B]◦ = λB(Σ[B]•)
−1

(∆λ−)[B]• = λB(∆[B]◦)
−1

, B ∈ V/ ∼ .



17.

Let V be the AMG from above, i.e., having the properties (1) and (2), and let U be the

underlying skeleton.

For S ∈ S(V ) define S[B], S[B>, and S<B> as the [B] × [B], [B]× < B >, and

< B > × < B > sub-matrices of S.

Let M ∈ V/ ∼ be a maximal box and let VM be the AMG induced by the subset

VM := V \[M ]. Then VM/ ∼= (V/ ∼)\{M}.

Furthermore [B], < B >, S[B], S[B>, and S<B>, B ∈ VM/ ∼ are the same in V and

VM .

The skeleton UM of VM is the subgraph of U induced by the subset VM of V .



18Transformation Proposition.

Proposition 0.2. The mapping

(0.6)

PD([M ])× R[M ]×<M> × P(UM) → P(U)

(LM , RM , SM) →

p

((
1VM

0

RM0 1[M ]

)(
ŜM 0

0 LM

)(
1VM

Rt
M0

0 1[M ]

))
=

p

((
ŜM ŜMRt

M0

RM0ŜM LM + RM0ŜMRt
M0

))

where the [M ]× VM matrix RM0 is given by (RM0)[M ]×<M> = RM

and (RM0)[M ]×(VM\<M>) = 0[M ]×(VM\<M>), is well-defined and a bijection.



19Transformation Proposition Continued.

The inverse mapping takes the form

(0.7)
PD([M ])× R[M ]×<M> × P(UM) ← P(U)

(Ŝ[M ]•, Ŝ[M>•, SVM×VM
) ← S

where Ŝ[M ]• := S[M ] − S[M>Ŝ−1
<M>S<M ] and Ŝ[M>• := S[M>Ŝ−1

<M>.

Note that Ŝ−1
<M> := ((Ŝ)<M>)−1.

Furthermore the ”hats” can be taken away since the skeleton of the subgraph induced by

< M > and [M ] are complete (no triplexes), i.e.,

S[M ]• := S[M ] − S[M>S−1
<M>S<M ] and S[M>• := S[M>S−1

<M>.



20PROOF.

Proof. The inverse of

(
1VM

0

RM0 1[M ]

)(
ŜM 0

0 LM

)(
1VM

Rt
M0

0 1[M ]

)

is

∆ :=

(
1VM
−Rt

M0

0 1[M ]

)(
Ŝ−1

M 0

0 L−1
M

)(
1VM

0

−RM0 1[M ]

)
=

(
Ŝ−1

M + Rt
M0L

−1
M RM0 −Rt

M0L
−1
M

−L−1
M RM0 L−1

M

)
.

Let (u, v) 6∈ E∪Eo with u, v ∈ VM . Then either u 6∈< M > or v 6∈< M > since

the AMG V is without triplexes. Thus ∆uv = (Ŝ−1
M +Rt

M0L
−1
M RM0)uv = (Ŝ−1

M )uv+

(Rt
M0L

−1
M RM0)uv. Since Ŝ−1

M ∈ PD0(UM) we get (Ŝ−1
M )uv = 0. Furthermore

(Rt
M0L

−1
M RM0)uv = 0 since either u 6∈< M > or v 6∈< M >.



21Proof, cont.

For u, v ∈ M there is nothing to prove. Thus let u ∈ M and v ∈ VM with

(u, v) 6∈ E ∪ Eo. Thus v 6∈< M >. This implies that (−L−1
M RM0)uv = 0.

Since thus ∆ ∈ S(U) ∩ P(V ) = PD0(U), we have ∆−1 ∈ PD(U) and thus

p(∆−1) ∈ P(U). Thus the mapping is thus well-defined.

It is straight forward to establish that the mapping is injective. Thus we only have to es-

tablish that it is surjective. Let S ∈ P(U). Then Ŝ ∈ PD(U). Define Ŝ[B]• := S[B]−

S[B>Ŝ−1
<B>S<B] and Ŝ[B>• := S[B>Ŝ−1

<B>, B ∈ V/ ∼, noting that S[B] = (Ŝ)[B],

and S[B> = (Ŝ)[B>. Also let ŜVM
denote the VM ×VM sub-matrix of Ŝ. It is obvious

that Ŝ[B]• ∈ PD([B]) and that Ŝ[B>• ∈ R[B]×<B>, particular for B = M . Further-

more Ŝ−1
VM

:= (ŜVM
)−1 = ((Ŝ)−1)VM

− (Ŝ−1)VM×[M ][(Ŝ
−1)[M ]]

−1(Ŝ−1)VM×[M ].

Suppose u, v ∈ VM with (u, v) 6∈ E ∪ Eo. Then again either u 6∈< M > or

v 6∈< M >.



22Proof, cont.

Since Ŝ−1 ∈ PD0(U) we have (Ŝ−1)uv = 0. In particular we ((Ŝ−1)VM
)uv = 0 and

((Ŝ−1)VM×[M ][(Ŝ
−1)[M ]]

−1(Ŝ−1)VM×[M ])uv = 0. Thus ((ŜVM
)−1)uv = 0. This es-

tablish that (ŜVM
)−1 ∈ PD0(UM) and finally that ŜVM

∈ PD(UM). Note then that

p(ŜVM
) = SVM

. We will now establish that the image of (S[M ]•, S[M>•, SVM
) by the

mapping (??) is S. Only the [M ]×VM and the [M ]× [M ] sub-matrices of the image

has to be checked. Define R := VM\ < M >. Then V = [M ]∪̇ < M > ∪̇R and

(Ŝ−1)[M ]×R = 0. Thus the ([M ]∪̇R) × ([M ]∪̇R) matrix (Ŝ−1)[M ]∪̇R is a 2 × 2

block diagonal matrix. Since

(Ŝ−1)[M ]∪̇R = (Ŝ[M ]∪̇R−Ŝ([M ]∪̇R)×<M>(Ŝ<M>)−1Ŝt
([M ]∪̇R)×<M>

)−1 the ([M ]∪̇R)×

([M ]∪̇R) matrix Ŝ[M ]∪̇R−Ŝ([M ]∪̇R)×<M>(Ŝ<M>)−1St
([M ]∪̇R)×<M>

is also block di-

agonal. Thus we have Ŝ[M ]×R = Ŝ[M>Ŝ−1
<M>Ŝ<M>×R. For the [M ]×[M ] sub-matrix

we get Ŝ[M ]•+ Ŝ[M>•0ŜVM
Ŝt

[M>•0 = Ŝ[M ]•+ Ŝ[M>•Ŝ<M>Ŝt
[M>• = Ŝ[M ]. For the

[M ]× VM sub-matrix we get (Ŝ[M>•0ŜVM
)[M ]×<M> = Ŝ[M>•Ŝ<M> = Ŝ[M> and

(Ŝ[M>•0ŜVM
)[M ]×R = Ŝ[M>Ŝ−1

<M>Ŝ<M>×R = Ŝ[M ]×R. �



23Jacobian.

Proposition 0.3. The Jacobian of the mapping (??) and its inverse are |(SM)<M>|
[M ]

and |S<M>|
−[M ], respectively.

Proof. Partition S ≡ S(ΛM , R[M>, SM) ∈ P(U) into the three ordered components

(SVM
, S[M>, S[M ]) all function of (ΛM , R[M>, SM) ∈ PD([M ]) × R[B]×<B> ×

P(UM). Since SVM
(ΛM , R[M>, SM) = SM and S[M>(ΛM , R[M>, SM) =

(R[M>0ŜM)[M> = R[M>(ŜM)<M> we get

d(SVM
, S[M>, S[M ])

d(ΛM , R[M>, SM)
=




1 0 0

∗ 1[M ] ⊗ (ŜM)<M> 0

∗ ∗ 1


 ,

where the 1’s represent identity mappings and the *’s represent entries that are not

necessary to calculate. Thus the first half of the proposition follows. For the inverse

mapping we have SM(S) = SVM
. Thus ŜM(S) = ŜVM

= (Ŝ)VM
we have that

(ŜM(S))<M> = (Ŝ)<M>. Thus the second result follows. �



24The fundamental integral.

Let ∆ ∈ PD0(U) and let λ ≡ (λB|B ∈ V/ ∼) ∈ R
V/∼
+ .

Consider the integral

JV(∆, λ) :=

∫

P(U)

∏
(|S[B]•|

λB|B ∈ V/ ∼) exp{−Tr(∆S)}dνV(S),

where

dνV(S) :=
∏

(|S[B]•|
−

[B]+<B>+1
2 |S<B>|

−
[B]
2 |B ∈ V/ ∼)dS

The integral will now be transformed by (??) to an integral on the righthand side of (??).

Note that the measure νV , by Proposition ??, is transformed into the measure

|LM |
−

[B]+<B>+1
2 |(SM)<M>|

[M ]
2 dLMdRMdν

VM
(SM)



25The fundamental integral, cont.

We now rewrite the function to be integrated in terms of the variables on the left hand side

of (??):

Let

(0.8) S = p(

(
1VM

0

RM0 1M

)(
ŜM 0

0 LM

)(
1VM

Rt
M0

0 1M

)
)

and

(0.9) ∆ =

(
1VM

P t
M0

0 1M

)(
∆M 0

0 ΥM

)(
1VM

0

PM0 1M

)



26The fundamental integral, cont.

Then

Tr(∆S)) = Tr(∆Ŝ)) =

Tr(

(
1VM

P t
M0

0 1M

)(
(∆M 0

0 ΥM

)(
1VM

0

PM0 1M

)
·

(
1VM

0

RM0 1[M ]

)(
ŜM 0

0 LM

)(
1VM

Rt
M0

0 1M

)
) =

Tr(

(
∆M 0

0 ΥM

)
·

(
1VM

0

RM0 + PM0 1M

)(
ŜM 0

0 LM

)(
1VM

Rt
M0 + P t

M0

0 1M

)
) =

Tr(

(
∆M 0

0 ΥM

)(
ŜM 0

0 LM + (RM0 + PM0)ŜM(RM0 + PM0)
t

)
) =

Tr(∆MSM) + Tr(ΥMLM) + Tr(ΥM(RM0 + PM0)ŜM(RM0 + PM0)
t).



27The fundamental integral, cont.

The transformed integral is therefore

∫

PD([M ])×R[M ]×<M>×P(UM)

|LM |
λM−

[M ]+<M>+1
2 exp{−Tr(ΥMLM)}·

|(SM)<M>|
[M ]
2 exp{−Tr(ΥM(RM − PM)(ŜM)<M>(RM − P t

M))}·

∏
(|(ŜM)[B]•|

λB|B ∈ VM/ ∼) exp{−Tr(∆MSM)}dLMdRMdν
VM

(SM) =

π
[M ]([M ]−1)

4

∏
(Γ(λM −

< M >

2
−

i− 1

2
)|i = 1, · · · , [M ])·

|ΥM |
−λM+<M>

2 π
[M ]<M>

2 |ΥM |
−<M>

2 JVM
(∆M , λM) =

|ΥM |
−λMJVM

(∆M , λ−M),

where λ−M = (λB|B ∈ VM/ ∼).



28The fundamental integral, cont.

Continuing descending along a never decreasing ordering of elements in V/ ∼ and noting

that ΥM = ∆M◦ we obtain that the integral converges if and only if

(0.10) λB >
[B]+ < B > −1

2
, B ∈ V/ ∼

and the value is

JV(∆, λ) = cV(λ)
∏

(|∆[B]◦|
−λB|B ∈ V/ ∼),

where

cV(λ) := π
Dim(P(U))−V

2

∏
(
∏

(Γ(λB−
< B >

2
−

i− 1

2
)|i = 1, · · · , [B])|B ∈ V/ ∼).



29Generalized Rietz distribution.

Let λ ≡ (λB|B ∈ V/ ∼) satisfy (??). The full natural and canonical exponential family

on P(U) ⊂ S0(U) generated by the measure∏
(|Ŝ[B]•|

λB|B ∈ V/ ∼)dνV(S) is thus

(R∆,λ ∈ P(S(U))|∆ ∈ PD0(U)),

where dR∆,λ(S) :=

π
Dim(P(V ))−V )

2
∏

(|∆[B]◦|
λB|B ∈ V/ ∼)

∏
(|S[B]•|

λB|B ∈ V/ ∼)
∏

(
∏

(Γ(λB −
<B>

2
− i−1

2
)|i = 1, · · · , [B])|B ∈ V/ ∼)

exp{−Tr(∆S)dνV(S)

Note that these families are dependent of the representation of the UDG U as an AMG V

with complete boxes and without triplexes.

Definition 0.2. The probability R∆,λ is called the generalized Rietz distribution on

P(U) wrt. the representation V of U and with shape parameter λ ≡ (λB|b ∈ V/ ∼)

and natural parameter ∆.



30Expectation of generalized Rietz distribution.

Proposition 0.4. The expectation E(R∆,λ) of R∆,λ is given by

E(R∆,λ) = ∆λ−.



31Proof of Expectation of generalized Rietz distribution.

Proof. We shall use induction after V/ ∼. Using the representations of S and ∆ given

in (??) and (??), respectively, and the integral transformation given by (??), we get

E(R∆,λ) =

∫

P(U)

SdR∆,λ(S) =

p(
1

JV(∆, λ)

∫

PD([M ])×R[M ]×<M>×P(UM)

(
ŜM ŜMRt

M0

RM0ŜM LM + RM(ŜM)<M>RM

)
·

|LM |
λM−

[M ]+<M>+1
2 exp{−Tr(ΥMLM)}·

|(SM)<M>|
[M ]
2 exp{−Tr(ΥM(RM − PM)(SM)<M>(RM − PM)t)}·∏

(|(SM)[B]•|
λB|B ∈ VM/ ∼) exp{−Tr(∆MSM)}dLMdRMdν

VM
(SM)) =

p(

(
∆̂

λ−M−
M ∆̂

λ−M−
M P t

M0

PM0∆̂
λ−M−
M LRC,

)
),

where the lower right corner LRC is calculated by first integrating out over LM to obtain

(λM −
<M>

2
)Υ−1 + RM(SM)<M>Rt

M , then integrating over RM to obtain

(λM −
<M>

2
)Υ−1 + <M>

2
Υ−1 + PM(SM)<M>P t

M , and finally over SM to obtain

the LRC as λMΥ−1 + PM(∆̂λ−M−)<M>P t
M .



32Proof of Expectation of generalized Rietz distribution, cont.

All together the expectation becomes

p(

(
1VM

0

PM0 1M

)(
((∆M)λ−M− 0

0 λMΥ−1
M

)(
1VM

P t
M0

0 1M

)
) = ∆λ−.

�



33Parametrization by Expectation.

If ∆ ∈ PD0(U) is replaced by the Σ−λ, Σ ∈ P(U) we obtain the Rietz distributions

parameterized by their expectation. Using that (Σ−λ)[B]◦ = λB(Σ[B]•)
−1, B ∈ V/ ∼

we obtain

dRΣ,λ(S) :=
π

Dim(P(V ))−V )
2

∏
(λ

λB[B]
B |B ∈ V/ ∼)

∏
(
∏

(Γ(λB −
<B>

2
− i−1

2
)|i = 1, · · · , [B])|B ∈ V/ ∼)

·

∏
(|SB•|

λB|B ∈ V/ ∼)∏
(|ΣB•|λB|B ∈ V/ ∼)

exp{−Tr(Σ−λS)}dνG(S),

where dνG(S) := c ·
∏

(|SB•|
λB|B ∈ V/ ∼)dνV(S)

Definition 0.3. The probability RΣ,λ is called the generalized Rietz distribution on

P(U) wrt. the representation V of U and with shape parameter λ ≡ (λB|B ∈ V/ ∼)

and expectation parameter Σ.



34The generalized Rietz model.

The Rietz model wrt to V (with fixed shape parameter λ) in its expectation parametrization

is then

(RΣ,λ ∈ P(S(U))|Σ ∈ P(U))

It is trivial that the ML estimator Σ̂(S) for Σ ∈ P(U) at the observation point S ∈ P(U)

exists for all S ∈ P(U) and it is uniquely given by Σ̂(S) = S.

It is trivial that Σ̂ is complete and sufficient.



35Products, convolutions, and marginal of Rietz distributions.

OK.



36Connection to the work by Letac and Massam I

In this remark we investigate the relation to the work by Letac and Massam (200?) ab-

breviated LM. Let U be an DUG. In the paper LM, called Wishart distributions for

decomposable graphs, the authors define their Wishart distributions of type I on the

open convex cone QU = P(U), to connect our notation to their notation. We now recall,

in fact almost quoting, as good as possible, Letac and Massam’s definitions surrounding

their Wishart distributions of type I, only. Let C, S, and ν(S) denote the set of cliques,

the set of separators, and the multiplicity of the sparator S ∈ S, respectively. As in LM

we shall now assume C > 1.



37Connection to the work by Letac and Massam II

The central idea in LM is the integral

I(α, β, ∆) :=

∫

P(U)

H(α, β, X) exp{−Tr(∆X)}dµU(X),

(α, β) ≡ ((αC|C ∈ C), (βS|S ∈ S)) ∈ RC × RS, ∆ ∈ PD0(U), where

H(α, β, X) :=

∏
(|XC|

αC|C ∈ C)∏
(|XS|ν(S)βS|S ∈ S)

dµU(X) := H((−
C + 1

2
|C ∈ C), (−

S + 1

2
|S ∈ S), X)dX

The set of (α, β) ∈ RC × RS such that I(α, β, ∆) <∞ and such that

I(α, β, X̂−1)/H(α, β, X) = c(α, β), X ∈ P(U) is denoted A. The Wishart

distribution of type I with parameters ((α, β), Σ) ∈ A×P(U) is then by LM defined

to be

dWP(U),α,β,Σ(X) =
1

c(α, β)H(α, β, Σ)
H(α, β, X) exp{−Tr(Σ̂−1X)}dX.



38Connection to the work by Letac and Massam III

The problem of characterizing A and calculating c(α, β), (α, β) ∈ A is therefore main

consideration in LM. Nevertheless LM do not obtain a complete solution to this problem.

If U does not contain the DUG •−•−•−•, denoted A4 in LM, as an induced subgraph

the open convex cone P(U) is a homogeneous cone. In this case the family Wishart

distributions of type I is identical‡ with the family of general Wishart distributions on

P(U) obtained by Andersson and Wojnar (200?) for ANY homogeneous cone, in particular

of course for the homogeneous cone P(U). In this case the problem is thus already solved

completely. Nevertheless, LM presents a self contained version of the solution in this special

case.

‡except for a trivial re-parametrization



39Connection to the work by Letac and Massam IV

In the non-homogeneous case, i.e., U does contain A4 as an induced subgraph, LM’s

solution to the above problem is not complete, as they also point out themselfe. They find

subsets AP ⊆ A, each subset in general depends on a perfect ordering P of the cliques,

C1, · · · , CC and it only has dimension C + 1, cf. below. Thus ∪PAP ⊆ A. Since it is

unknown whether equality (probably not in general) holds A is therefore not characterized§

The family of Wishart distributions of type I parameterized by AP ×P(U) is closed under

convolution but depends of an arbitrary choice of perfect ordering P . If AP is replaced by

∪PAP the family does not depend of P but is not in general closed under convolution.

Furthermore the method does not work in the homogeneous case.

We shall now for a fixed P establish that the family of Wishart distributions of type I

parameterized by AP × P(U) defined by LM is a special case of our families of Rietz

distributions.

§Nevertheless, it is interesting that in the case of A4 LM establish that equality holds.



40Connection to the work by Letac and Massam V

Let for S2, S3, · · · , SC be the to P corresponding ordered listing of separators S2, S3, · · · , SC

with possible repeats.

The complicated definition of AP , cf. LM, Section 3.4, is the set of all (α, β) ≡

((αC|C ∈ C), (βj|S ∈ S)) ∈ RC × RS such that

(0.11)

αC > C−1
2

, C ∈ C

αC1 + δ2 > S2−1
2∑

(αCq|q ∈ JP (S))− ν(S)βS = 0, S ∈ S, S 6= S2,

where JP (S) = {j ∈ {1, · · · , C}|Sj = S} and δ2 :=
∑

(αCq|q ∈ JP (S2)) −

ν(S2)β2. Furthermore, still quoting LM, for (α, β) ∈ AP

c(α, β) := ΓS2(α1 + δ2)
ΓC1(α1)

ΓS2(α1)

∏
(
ΓCq(αq)

ΓSq(αq)
|q = 2, · · · , C)

with

Γr(p) := π
1
4r(r−1)

∏
(Γ(p−

j − 1

2
)|j = 1, · · · , r),

p ∈ R+, r ∈ N := {1, 2, · · · }. p > r−1
2

,



41Connection to the work by Letac and Massam VI

Since we have perfect order P of the cliques C1, · · · , CC we have: the history Hj :=

C1 ∪ C2 ∪ · · · ,∪Cj, j = 1, 2, 3, · · · , C, the separators Sj := Cj ∩Hj−1, j =

2, 3, · · · , C, and the remainders Rj = Cj\Hj−1, j = 2, 3, · · · , C. We now replacing

all undirected edges between a v ∈ Sj and a v′ ∈ Rj with an arrow v → v′. Also we

replace any undirected edge between v ∈ S2 and v′ ∈ C1\S2 by the arrow v → v′.

It is not difficult to see using the definition of the perfect order P that this assignment is

without conflicts, and that the resulting MG VP is acyclic without triplexes and with the

C+1 complete boxes S2, C1\S2, R2, · · · , RC. Furthermore by definition pa(S2) = ∅,

pa(C1\S2) = S2, and pa(Rj) = Sj, j = 2, · · · , C.

Note also that S = {Sj|j = 2, · · · ,S}.



42Connection to the work by Letac and Massam VII

Thus with V = VP , and with S replaced by X our

dνV(X) :=
∏

(|X̂[B]•|
−

[B]+<B>+1
2 |X̂<B>|

−
[B]
2 |B ∈ V/ ∼)dX =

|XS2|
−

S2+1
2 |X(C1\S2)•|

−
C1\S2+S2+1

2 |X̂S2|
−

C1\S2
2 ·

|XS2|
−

C1+1
2 |X(C1\S2)•|

−
C1+1

2

∏
(|XRj•|

−
Rj+Sj+1

2 |X̂Sj
|−

Rj
2 |j = 2, · · · , C)dX =

|XC1|
−

C1+1
2

∏
(
(
|XRj•||X̂Sj

|
)−Rj+Sj+1

2
|X̂Sj
|+

Sj+1

2 |j = 2, · · · , C)dX =

∏
(|X̂Cj

|−
Cj+1

2 |j = 1, · · · , C)
∏

(|X̂Sj
|−

Sj+1

2 |j = 2, · · · , C)
dX,

the measure µU defined by LM.



43Connection to the work by Letac and Massam VIII

Next let (α, β) ≡ ((αC|C ∈ C), (βS|S ∈ S)) ∈ RC × RS satisfying (??). Then

H(α, β, X) =

∏
(|XC|

αC|C ∈ C)∏
(|XS|ν(S)βS|S ∈ S)

=

∏
(|XCj

|
αCj |j = 1, · · · , C)

∏
(|XSj

|
βSj |j = 2, · · · , C)

=

|XC1|
α1
∏

(|XRj•|
αCj |j = 2, · · · , C)

∏
(|XSj

|
αCj
−βSj |j = 2, · · · , C) =

|XC1|
α1
∏

(|XRj•|
αCj |j = 2, · · · , C)

∏
(
∏

(|XS|
αCj
−βS|j ∈ JP (S))|S ∈ S) =

|XC1|
α1|XS2|

δ2
∏

(|XRj•|
αCj |j = 2, · · · , C)

∏
(|XS|

∑
(αCj

|j∈JP (S))−ν(S)βS|S ∈ S\S2)

|XC1\S2•|
α1|XS2|

α1+δ2
∏

(|XRj•|
αCj |j = 2, · · · , C) · 1 =

∏
(|XB•|

λBB ∈ V/ ∼)

with

(0.12) λB =





α1 + δ2 for B = S2

αC1 for B = C1\S2

αCj
for B = Rj, j = 2, · · · , C

,

an apparently much simpler expression.



44Connection to the work by Letac and Massam IX

Furthermore we have

B+ < B > −1

2
=





S2+∅−1
2

for B = S2

C1\S2+S2−1
2

for B = C1\S2
Rj+Sj−1

2
for B = Rj, j = 2, · · · , C

=





S2−1
2

for B = S2

C1−1
2

for B = C1\S2
Cj−1

2
for B = Rj, j = 2, · · · , C

.

Thus the the two last conditions in (??) are equivalent with our (??).



45Connection to the work by Letac and Massam X

For a fixed perfect ordering P of the cliques this established that the family Wishart distribu-

tion of type I, WP(U),α,β,σ, ((α, β), σ) ∈ AP×P(U), is the family of Rietz distribution

RΣ,λ,

(Σ, λ) ∈ P(U)× (×(]
[B]+ < B > −1

2
,∞[|B ∈ V/ ∼))

wrt to VP . The one to one correspondence between the two index setsAP×P(U) and the

above is given by (??) and Σ = (σ−1)−λ. In particularAP has dimension V/ ∼= C+1.

Note that our Rietz distributions has E(RΣ,λ) = Σ while for the Wishart distributions of

type I E(W ((α, β), σ)) in general is different from σ. From our point of view only the

natural parametrization or the parametrization by the expectation should be used.



46Notes to the work by Letac and Massam

Also it seems a little strange to use the functions H((α, β), ·), indexed by (α, β) ∈

RC+S, a C + S dimensional vector space, when the actual set(s) AP of interest are of

dimension C+1. I suggest that one takes the ordering serious and start with a representation

of U as a mixed graph V with complete boxes and with no triplexes, a representation of U ,

and replaces LM’s ”H-function” by

(S, λ)→
∏

(|SB•|
λB|B ∈ V/ ∼)

λ ≡ (λB|B ∈ V/ ∼) ∈ RV/∼, S ∈ P(U), and use our measure νV in more general

depending on the representation V of U . In that way one obtains as we have seen the Rietz

distributions a much general class of distributions that the Wishart distributions of type I.

In fact this point of view also works unaltered in the homogeneous case. In particular, we

think that the Wishart distributions of Type I in LM should, since they are a subclass of our

Rietz distributions, be called Rietz distributions since they depends on a representation VP

of U induced by the ordering P .



47From Rietz to Wishart.

From our point of view the following question natural arises:

Do that exist an intrinsic (canonical) choice of representation of a DUG U as a AMG VU

with complete boxes and no triplexes?

The construction of VU should not depend of any kind arbitrary choice, for example a choice

perfect ordering of the cliques, as in LM. The answer is yes and it therefore tempting to

call the Rietz distributions wrt VU for Wishart distribution wrt U . We will describe the

construction of VU .



48A natural representation of a DUG as an AMG.

The construction is based on a natural partial ordering ≺U≡≺ of on V generated by the

DUG U . Define for u, v ∈ V with u 6= v

v ≺U u if {u} ∪ nbU(u) ⊂ {v} ∪ nbU(v).

It is obvious that ≺ is a partial ordering of V . Note that u ≺ v implies that u − v in

U . Also note that the relation ≺U is empty if and only if U is a disjoint union of complete

UGs. In that case the construction is finished (before it ever started) and VU = U .

Step 1a: For all u, v ∈ V with v ≺ u replace the line v− u with the arrow v → u. A

MG without triplexes is thus obtained.

Step 1b: If an arrow v → v′ participate in a partly directed cycle replace it back to a line

v − v′.

The order of the replacements in Step 1b, if any, does not matter. The resulting graph V1

is an AMG without triplexes. Since U is a DUG and not a disjoint union of complete UG,

some lines are in fact replaced by arrows after Step 1b.

All the boxes in V1 are DUG as induced subgraphs of V1.



49A natural representation of a DUG as an AMG, Step 2.

The definition of ≺U make sense unchanged when U is replaced by V1. Again v ≺V1 u

implies v −V1 u and the relation ≺V1 is empty if and only if all boxes B ∈ V/ ∼ are

complete. In that case the construction is finished and VU = V1. Otherwise continue with

Step 2a: For all u, v ∈ V with v ≺V1 u replace the line v−V1 u with the arrow v → u.

A MG without triplexes is thus again obtained.

Step 2b: If an arrow v → v′ participate in a partly directed cycle replace it back to a line

v − v′.

Only new arrows from Step 2a could participate in partly directed cycles, in particular all

old arrows remains.

The order of the replacements in Step 2b, if any, does not matter.

The resulting graph V2 is an AMG without triplexes.

Since all boxes in V1 are DUG as induced subgraphs and not all boxes in V1 are complete,

some of the new arrows remains after from Step 2a remains after Step 2b.

All boxes in V2 are DUG as induced subgraphs.



50A natural representation of a DUG as an AMG, Step k.

If all boxes in V2 are complete the construction is finished and VU = V2. Otherwise

continue with
...

Step ka: For all u, v ∈ V with v ≺Vk−1
u replace the line v −Vk−1

u with the arrow

v → u. A MG without triplexes is thus again obtained.

Step kb: If an arrow v → v′ participate in a partly directed cycle replace it back to a line

v − v′.

Only new arrows from Step ka could participate in partly directed cycles, in particular all

old arrows remains.

The order of the replacements in Step kb, if any, does not matter.

The resulting graph Vk is an AMG without triplexes.

Since all boxes in Vk−1 are DUG as induced subgraphs and not all boxes in Vk−1 are

complete, some of the new arrows remains after from Step ka remains after Step kb.

All boxes in Vk are DUG as induced subgraphs.



51A natural representation of a DUG as an AMG, Final Step.

If all boxes in Vk are complete the construction is finished and VU = Vk. Otherwise

continue with step k + 1, k = 1, 2, · · · .

This process will terminate after finitely many steps, say n steps, ending with an AMG

VU := Vn with complete boxes and no triplexes.

Definition 0.4. The Rietz distributions RΣ,λ (or R∆,λ) on P(U) wrt. the representa-

tion VU of U , with shape parameter λ ≡ (λB|B ∈ V/ ∼), and expectation parameter

Σ ∈ P(U) (or natural parameter ∆ ∈ PD0(U)) is also called the Wishart distribution

WΣ,λ := RΣ,λ (W∆,λ := R∆,λ) on on P(U) with shape parameter λ, and expectation

parameter Σ (or natural parameter ∆).

The Wishart model (with fixed shape parameter λ) in its expectation parametrization is

then

(WΣ,λ ∈ P(P(U))|Σ ∈ P(U)).



52Outlook.

• Testing problems within generalized Rietz/Wishart distributions.

• Inverse generalized Rietz/Wishart distributions on PD0(U).

• Expectation of inverse generalized Rietz/Wishart distributions on PD0(U).

• Variance of Rietz/Wishart distributions.

• Generalized Rietz/ Wishart distributions on PD0(U).

• Generalized Inverse Rietz/ Wishart distributions on P(U).

• ETC.


