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Abstract

Estimation under restrictions is considered with both unbiased and biased initial
estimators. The properties of the restriction estimator are studied.

1 Introduction

The users of official statistics often require that estimates satisfy some certain restric-

tions. For example in the domain’s case this requirement is that the estimators of the

domain totals sum up to the population total or to its estimate. Another example is

that quarterly estimates have to sum up to the yearly total. It is natural that such

relationships are hold for the true population parameters, so they can be considered

and used as a kind of the auxiliary information. Involving this information into the

estimation process can improve the estimates.

One solution to the described situation is the general restriction estimator (GR) pro-

posed by Knottnerus (2003) that is based on the unbiased initial estimators. The

advantages of this GR estimator is the variance minimizing property among other lin-

ear estimators satisfying the same restrictions and using the same initial estimators in

its construction. But it is well known that there are very many good estimators that are

unbiased only asymptotically. In this paper we consider the biased initial estimators,

and the new restriction estimator will be constructed.

2 General restriction estimator. Definition and properties

Let θ = (θ1, ..., θk)′ be the parameter vector under study that satisfy linear restrictions:

Rθ = c, (1)



where R is an r × k matrix of rank r and c is the r-dimensional vector of constants.

If for example we require that two population totals, say t1 =
∑N

i=1 y1i and

t2 =
∑N

i=1 y2i, need to sum up to the population total t3 =
∑N

i=1 y3i, where N is the

size of the finite population and y1, y2, y3 are some study variables, then

R = (1, 1,−1), θ = (t1, t2, t3)′ and c = 0.

Theorem (Knottnerus, 2003, p. 328-329) Let θ̂ = (θ̂1, ..., θ̂k)′ be the vector of the unbi-

ased estimators of the parameter vector θ with a covariance matrix V, such that RVR′

can be inverted. Then the general restriction estimator θ̂GR that satisfies restrictions

(1), and the covariance matrix VGR of the general restriction estimator are:

θ̂GR = θ̂ + K(c−Rθ̂), (2)

VGR = Cov(θ̂GR) = (I−KR)V, (3)

where I is the k × k identity matrix and

K = VR′(RVR′)−1. (4)

As it was mentioned before, Knottnerus shows that the GR-estimator is a linear min-

imum variance estimator of θ, given θ̂, and given the information that Rθ = c. In

Sõstra (2007, p. 45) it is also shown that GR-estimator is more effective than the initial

estimator θ̂, VGR < V in the sense of the Löwner ordering.

The case of the domain totals, when the domain totals need to sum up to the population

total, is very thoroughly studied in Sõstra (2007).

3 Estimation with restrictions for biased initial estimators

Let θ̂ = (θ̂1, ..., θ̂k)′ be the vector of initial estimators so that,

Eθ̂ = θ + b, (5)

where b = (b1, ..., bk)′ is a bias-vector or simply bias. Denote the mean square error of

θ̂ by M, so M = MSE(θ̂). Then M = V+bb′, where V is the true covariance matrix



of θ̂.

Let us consider the transformed parameter vector1,

ϑ = M−1/2θ. (6)

The corresponding estimator is

ϑ̂ = M−1/2θ̂ (7)

with MSE(ϑ̂) = I, where I : k × k is the identity matrix.

Assume also that θ satisfies restrictions,

Rθ = 0,

where R is the m × k matrix of rank m. So, θ is in a linear space specified by

NR = {θ; Rθ = 0}.

In general, restrictions can be defined as Rθ = c, where c can be different from 0. But

in this case it’s possible to choose a fixed θ0 such that Rθ0 = c and then

Rθ − c = Rθ −Rθ0 = R(θ − θ0),

so we can consider the parameter θ̃ = θ − θ0 instead of θ for which Rθ̃ = 0. Thus, it

is no restriction to put c = 0.

For the parameter ϑ the corresponding restriction matrix is

L = R ·M1/2. (8)

Due to (6) and (8) we have

NR = {θ : Rθ = 0} = {ϑ : Lϑ = 0} = NL. (9)

Let us project ϑ̂ orthogonally on the restriction space NL:

ϑ̂L = PLϑ̂, (10)

where

PL = I− L′(LL′)−1L = I−M1/2R′(RMR′)−1RM1/2. (11)
1For a positive-definite matrix A exists precisely one positive definite matrix B with B2 = A, so

we define A1/2 = B.



The estimator ϑ̂L satisfies the restrictions Lϑ̂L = 0. On the other hand, Lϑ̂L =

RM1/2ϑ̂L, from which follows that the estimator

θ̂R = M1/2ϑ̂L (12)

satisfies the restrictions Rθ̂R = 0. Do to (7) and (10), θ̂R can be expressed through θ̂:

θ̂R = M1/2PLϑ̂ = M1/2PLM−1/2θ̂. (13)

The expectation of θ̂R is then

E(θ̂R) = M1/2PLM−1/2E(θ̂). (14)

Using (5) and (6) we get

E(θ̂R) = M1/2PLϑ+ M1/2PLM−1/2b.

Obviously for ϑ ∈ NL we have PLϑ = ϑ. From (6) it follows that M1/2ϑ = θ. Finally

for the expectation of θ̂R we have

E(θ̂R) = θ + bR, (15)

where bR = M1/2PLM−1/2b is the vector of biases of the restriction estimator θ̂R.

From (13) and the property of MSE2 we get for the mean square error matrix of the

restriction estimator θ̂R:

MSE(θ̂R) = M1/2PL ·MSE(ϑ̂L) ·PLM1/2.

Taking into consideration that MSE(ϑ̂L) = I and that P2
L = PL we get

MSE(θ̂R) = M1/2PLM1/2. (16)

From (11) we can rewrite the last expression as

MSE(θ̂R) =
[
I−MR′(RMR′)−1R

]
M. (17)

Denote ê = θ̂ − θ̂R. Due to (7) and (13), we have

ê = M1/2ϑ̂−M1/2PLϑ̂ = M1/2(I−PL)ϑ̂. (18)

2It can be easily shown that MSE(Aθ̂) = AMSE(θ̂)A′, where A is the constant matrix of the
appropriate size.



Let us observe the MSE matrix between the error term ê and the restriction estimator

θ̂R. First note that the parameter estimated by ê is a zero-vector since both θ̂ and θ̂R

estimate the same parameter θ. From definition of the MSE matrix we have:

MSE(θ̂R, ê) = E
[
(θ̂R − θ)ê′

]
. (19)

By using MSE properties3 and relationships (13), (18) the last equation can be simpli-

fied:

MSE(θ̂R, ê) = MSE
[
M1/2PLϑ̂, M1/2(I−PL)ϑ̂

]
= M1/2PLMSE(ϑ̂)(I−PL)M1/2.

Projectors PL and I−PL project onto orthogonal subspaces, which means that PL(I−

PL) = 0. Since by (7) MSE(ϑ̂) = I, it holds:

E
[
(θ̂R − θ)ê′

]
= 0. (20)

For the mean squre error of θ̂ we have:

M = MSE(θ̂) = E
[
(θ̂R − θ + θ̂ − θ̂R)(θ̂R − θ + θ̂ − θ̂R)′

]
= MSE(θ̂R) + E

(
êê′
)

+ E
[
(θ̂R − θ)ê′

]
+ E

[
ê(θ̂R − θ)′

]
.

Using (20) we finally get:

MSE(θ̂) = MSE(θ̂R) + E(ee′). (21)

Since E(ee′) ≥ 0 (nonnegative definite), we have MSE(θ̂)−MSE(θ̂R) ≥ 0 from which

it is clear that MSE(θ̂) ≥MSE(θ̂R) (in Löwner ordering). The last expression claims

that the diagonal elements of the matrix on the right are not greater than the respective

diagonal elements of the matrix on the left.
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3The MSE between two random vectors can be defined analogically to the covariance matrix as
MSE(θ̂, ϑ̂) = E(θ̂− θ)(ϑ̂−ϑ)′. Then for the constant matrices A, B and constant vectors a and b is
hold:

MSE(Aθ̂ + a,Bϑ̂+ b) = AMSE(θ̂, ϑ̂)B′.


