
 1

Generalized regression and model-calibration estimation 
for domains: Accuracy comparison 
 
Risto Lehtonen1, Carl-Erik Särndal2 and Ari Veijanen3 

 

1 University of Helsinki, Finland 
e-mail: risto.lehtonen@helsinki.fi 
 
2 Université de Montréal, Canada 
e-mail: carl-erik.sarndal@rogers.com 
 
3 Statistics Finland, Finland 
e-mail: ari.veijanen@stat.fi 
  

1  Preliminaries and key questions 
In this paper, we discuss generalized regression (GREG) estimation and model-calibration estimation 
for population subgroups or domains under unequal probability sampling. The classical GREG 
estimator of Särndal, Swensson and Wretman (1992) uses a fixed-effects linear assisting model. A 
multinomial logistic model is introduced as an assisting model for GREG in Lehtonen and Veijanen 
(1998). Logistic GREG has been examined further for domain estimation in Lehtonen, Särndal and 
Veijanen (2003, 2005), Lehtonen and Veijanen (2008) and Myrskylä (2007).  
 
Model calibration (MC), which also provides a design-based method, was introduced by Wu and Sitter 
(2001) and was further discussed in Wu (2003), Lehtonen, Myrskylä, Särndal and Veijanen (2007), 
Särndal (2007) and Lehtonen, Särndal and Veijanen (2008). A key property of MC is that the weights 
are calibrated to the population total of the predictions derived via an assumed model. For 
comparability with the GREG approach, we use a logistic model. Under this model, GREG and MC 
require an access to unit-level auxiliary information. Both GREG and MC provide nearly design 
unbiased methods. 
 
We extend in this paper the model-calibration method to domain estimation. We present results on the 
accuracy of logistic GREG and MC estimators of domain totals of a binary response variable. The 
results are based on Monte Carlo experiments where repeated probability proportional-to-size samples 
were drawn from an artificially generated finite population. 
 
The different combinations of the level of model calibration (at the population level, at the domain 
level) and model type (common models, models with domain-specific parameters) are illustrated in 
Table 1. In this paper, we examine the performance of GREG and MC with different parametrization 
of the logistic regression model. For a fair comparison with GREG, we consider the case where MC is 
at the domain level. This is because we assume that the domains are identifiable (domain membership 
is known for every population element). The estimators MC-P-C and MC-P-D, which use model 
calibration at the population level, are thus excluded. We ask: Does MC outperform GREG for certain 
model choices– or vice versa? 
 
Table 1. GREG and MC estimators by the level of model calibration and model type  
 

Model type  
 
Level of model calibration 

C: Common model 
formulation for all domains 

D: Model formulation 
with domain-specific 
parameters 

P: Population level MC-P-C MC-P-D 
D: Domain level MC-D-C MC-D-D 
N: None GREG-N-C GREG-N-D 
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2  Methods 
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Target parameters  ,   1,...,

Domain totals of binary response variable 
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Artificial finite population 
     One million elements 
       100 domains, size of domain proportional to exp( ), (0,2.9) 

Population generating model: Logistic mixed model
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3  Results 
Results on the accuracy of GREG and MC estimators are in Table 2. Now, we consider the case where 
MC is at the domain-level. The results indicate that for the common model type, the accuracy of MC is 
better than that of GREG. GREG and MC indicate similar accuracy when model calibration is at the 
domain level and the underlying model contains domain-specific intercept terms. 
 
The structure of the linear part of the model affects accuracy. Accuracy tends to improve for both 
estimators when using models that incorporate domain-specific intercepts. Usually, accuracy is better 
for estimators whose model includes the πPS size variable 1x . Best accuracy is for models, which 
include both 1x  and 2x . 
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Table 2. Accuracy of GREG and MC estimators by model type 
 

 
Mean RRMSE (%) 

 

 
Model type 
 

 
Linear part of model 
 

 
Estimator 
of domain 
total 
 

Minor 
(20-69) 

Medium 
(70-119) 

Major 
(120-) 

MC-D-C 26.4 12.6 13.2 
0 1 1kxβ β+  

GREG-N-C 28.9 13.4 16.3 
MC-D-C 26.1 13.2 13.0 

0 2 2kxβ β+  
GREG-N-C 28.2 13.8 14.6 
MC-D-C 22.1   9.9 10.8 

Common models 
 
Common intercept 
and common slopes 

0 1 1 2 2k kx xβ β β+ +  
GREG-N-C 24.8 10.9 14.3 
MC-D-D 26.2 12.5 13.2 

0 1 1d kxβ β+  
GREG-N-D 24.9 12.4 13.1 
MC-D-D 25.9 13.2 12.9 

0 2 2d kxβ β+  
GREG-N-D 26.0 13.2 12.9 
MC-D-D 20.3   8.9   9.9 

Domain-specific 
models 
 
Domain-specific 
intercepts and 
common slopes 0 1 1 2 2d k kx xβ β β+ +  

GREG-N-D 19.8   8.9   9.8 
 

4  Conclusions 
The comparison of GREG and MC methods for domain estimation shows that GREG is more sensitive 
to the model choice than MC. If the explanatory power of the assisting model of GREG is “weak”, 
model calibration can improve accuracy. This can happen if calibration is at the domain level. But if 
the explanatory power of the model is “strong”, model calibration does not necessarily improve 
accuracy. These findings are important for practical purposes. Other variants of model calibration 
estimators and their relation to the GREG family estimators are topics of further research. 
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