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Abstract

This paper is mainly a review of the splitting method for unequal probability
sampling. However, it also contains some significant novelties.

1 Introduction

Let U = {1, 2, . . . , N} be a population of units for which information about the mean or

total of some interesting y-variable is required. Often a sample survey is needed to get

that information. Simple random sampling without replacement (SRS) is sometimes

suitable but often it is more efficient to sample with unequal inclusion probabilities

πi, i ∈ U , for the units . In Särndal et al. (1992) unequal probability sampling is called

πps sampling. Many different designs for πps sampling have been suggested over the

years. Comprehensive accounts are given by Brewer and Hanif (1983) and Chaudhuri

and Vos (1988).

The splitting method, which was introduced by Deville and Tillé (1998) and is further

described by Tillé (2006, Chapter 6), is a general method for obtaining a πps sample.

It uses the idea that the inclusion probability vector π can be seen as a point in an

N -dimensional unit cube and that a sample can be seen as corner of that cube. To get

a sample, we may start at π and perform a very general random walk without drift

within the cube and then on its faces and subfaces until a corner is reached. To get

fixed sample size and different balancing conditions satisfied, restrictions should be put

on the random walk.

In this paper the general method is first described. Then special cases are presented

in examples. The paper also contains a brief description of the cube method for balanced

sampling. Finally there are some concluding comments.



2 The splitting method, general description

Let πi, i ∈ U , be given inclusion probabilities. Often they sum to a desired fixed sample

size n. The vector π = (π1, π2, . . . , πN ) is a point in the cube

C = {x; 0 ≤ xi ≤ 1, i = 1, 2, . . . , N}.

Each corner x of the cube can be seen as a sample: if xi = 1, the population unit

i belongs to the sample and if xi = 0, it does not. The general idea of the splitting

method is to perform in discrete time, t = 0, 1, 2, . . . , a very general random walk

without drift within the cube and on the faces and the subfaces of the cube. It starts

at π(0) = π and ends as soon as a corner has been reached. Since it has no drift,

sampling is performed with the given inclusion probabilities. Mathematically the walk

is described by a martingale

π(t) = π(t− 1) + e(t) with E(e(t)|Ft−1) = 0, t = 1, 2, . . . ,

where Ft−1 denotes the ’past’. Hence E(π(t)) = E(π(t− 1)) = . . . = π(0) = π.

There are many possible such random walks and thus the method is very general

and yields many different sampling designs. If
∑

U πi = n and the walk is restricted

to be in the hyperplane {x;
∑N

i=1 xi = n}, which contains all corners of the cube with

exactly n coordinates equal to 1, then a sample of size n is obtained.

The name of the method is better motivated by the following alternative and some-

what more general description. In the first step, π is split as π =
∑M

k=1 pkπ
(k), where

each π(k) belongs to the cube and 0 < pk < 1 with
∑M

k=1 pk = 1. A random choice of

vector π(k) according to the probabilities pk, k = 1, 2, . . . ,M, is made. The new vector

π(1) is then further split and so on. It can be arranged so that for some π(t) it may

happen that there is a simple way of getting the sample and then the procedure can be

finished rapidly. If
∑

U πi = n and, in every step, each π(k) has coordinate sum equal

to n, the sample size will be n.

The case M = 2 is illuminating. An arbitrary vector u = (u1, u2, . . . , uN ) is chosen.

A random u is possible. Let

π(1) =

{
π + λ1u with probability p1

π − λ2u with probability p2,



where p1 = λ2/(λ1 + λ2) and p2 = 1 − p1. Then E(π(1)) = π. The scalars λ1 and λ2

must be chosen such that all the coordinates of π(1) are in the interval [0, 1]. They

can also be chosen such that maxi{πi + λ1ui} = 1 and mini{πi − λ2ui} = 0, meaning

that π(1) will be on one of the faces of the cube, i.e. one of the coordinates of π(1) is

0 or 1. The procedure then proceeds on that face with a new u and after a new step

one further coordinate is 0 or 1, etc. A coordinate that once has become 0 or 1 cannot

be further changed, i.e. the sample is gradually appearing during the procedure. A

sample of fixed size n is obtained if
∑

U πi = n and, in each step,
∑N

i=1 ui = 0, i.e. if

u ⊥ (1, 1, . . . , 1).

3 Different applications of the splitting method

There are many different implementations of the splitting method, cf. Tillé (2006,

Chapter 6). This section presents old and novel ones. As will be seen, not seldom

well-established sampling procedures can be described in terms of splitting.

Often only the first step of the procedure needs to be described since in the subse-

quent steps everything is repeated on a smaller population, or, equivalently, on a cube

with lower dimension, and with an updated inclusion probability vector. It is assumed

that all πi are strictly between 0 and 1 since for a unit with πi equal to 0 or 1 the

sampling outcome is already clear.

In the examples there are also given small comments on the properties of the sam-

pling designs. These comments concern entropy and possible invariance with respect to

the dual eliminatory design defined below. The entropy of a design with inclusion prob-

abilities πi and probability function p(x;π) is given by E = −
∑

x p(x;π) log(p(x;π)),

with summation over all possible samples x. It is desirable to have a high entropy, i.e.

randomness, for a sampling design. For each design there is an eliminatory design with

the same inclusion probabilities and with probability function p∗(x; π) = p(1−x;1−π).

It derives from choosing the sample as the complement of a sample according to the

inclusion probabilities 1−πi, i ∈ U . Preferably a chosen design is invariant with respect

to its eliminatory design, i.e. p∗(x; π) = p(x; π), since otherwise the entropy can be

increased by making a random choice among the two designs.



Example 1 (Poisson sampling). Assume that the πi:s are given with two decimals.

With start at π, perform a simple symmetric random walk with step-length 0.01, or

a Brownian motion without drift, within the cube and then on its faces and subfaces

until a corner is reached. It can be verified that this procedure is equivalent to Poisson

sampling. Thus, if the random indicator Ii is 1 when unit i is sampled and otherwise 0,

then P (Ii = 1) = πi and all the indicators are independent. The sample size is random.

Of course, the random walk method is not the most efficient way of implementing

Poisson sampling. The design has maximal entropy and it is invariant with respect to

its eliminatory design.

Example 2 (The pivot method). Let
∑

U πi = n. The pivot method is a simple

method to obtain a πps sample of fixed size n. Choose two units in the population,

either randomly or according to some systematic scheme. It is no restriction to assume

that those are units 1 and 2. Then the reduced vector π = (π1, π2) is split and updated

as follows:

if π1 + π2 < 1 : π(1) =

{
(π1 + π2, 0) with probability p1 = π1

π1+π2

(0, π1 + π2) with probability p2 = π2
π1+π2

if π2 + π2 ≥ 1 : π(1) =

{
(π1 + π2 − 1, 1) with probability p1 = 1−π1

2−π1−π2

(1, π1 + π2 − 1) with probability p2 = 1−π2
2−π1−π2

.

Thus if π1 + π2 < 1, one of the two units will not be in the final sample whereas if

π1+π2 ≥ 1, one of them will be there. This non-sampled/sampled unit is then excluded

from further consideration and the procedure is repeated on the N − 1 remaining

units and with an updated inclusion probability vector with all its coordinates strictly

between 0 and 1. Finally a sample of size n is obtained.

The pivot design is invariant with respect to its eliminatory design but the entropy

is usually a little lower than what is possible to achieve for a πps design of fixed size.

Example 3 (Generalized Sampford sampling). This is an extension of the pivot method

to the case that an arbitrary number of units are picked out in each step. It is no

restriction to assume that these units are units 1, 2, . . . ,M with corresponding inclusion

probabilities π1, π2, . . . , πM . The sum of them is m + a, where m is an integer and

a ∈ [0, 1). We would like to give m units the new inclusion probabilities 1, one unit the

new inclusion probability a, and all the remaining M −m− 1 units the new inclusion



probabilities 0. Thus the sampling outcome should be made definite for all the units

except a single one. That unit can then be picked out again in some later step.

We proceed as follows. First one unit is drawn with replacement according to the

probabilities πi, i = 1, 2, . . . ,M, normalized to have sum 1. Then m further units are

drawn with replacement according to probabilities p′i ∝ πi/(1−πi) with sum 1. Provided

that all these m+1 units are distinct, the outcome is accepted, otherwise the procedure

is fully repeated until acceptance. Then the first drawn unit is given the new inclusion

probability a whereas the other m units get the inclusion probabilities 1. All remaining

units get the inclusion probabilities 0. With sampling indicators Ii, i = 1, 2, . . . ,M, we

put Ii = a for the first drawn unit, Ii = 1 for the m units, and Ii = 0 for all remaining

units. Then indeed, as desired, E(Ii) = πi. This result is an extension of Sampford’s

(1967) well-known result. Sampford’s result covers the case a = 1. The verification of

the extension is omitted since it is rather technical.

This method can also be used when the units of the population come in blocks to

the sampler. The sampler decides the sampling outcome for all the units except one in

the block and leave the sampling decision for the remaining unit to a later occasion.

Example 4 (Reduction to SRS). The goal is to obtain a πps sample of fixed size n

by reducing after splitting the sampling to simple random sampling. In each step the

splitting is into two components but one of these corresponds to SRS. In the first step

we split as π = p1π
(1) + (1 − p1)π(2), where π(1) = n

N [1, 1, . . . , 1]. Both π(1) and π(2)

have coordinate sum equal to n. To get the coordinates of π(2) to belong to [0,1], it is

necessary and sufficient that 0 ≤ p1 ≤ pu = min(α, β), where

α = min
i
{N

n
πi} and β = min

i
{ N

N − n
(1− πi)}.

The upper bound pu can be used as p1-value and then π(2) be calculated. If π(1) is

chosen, SRS is performed and the procedure ends. If π(2) is chosen, first all coordinates

that are 0 are removed, and then a new analogous splitting of the reduced π(2) is

performed, and so on. Thus sometimes the procedure rapidly yields a sample. However,

the execution time has a large variation.

The design is invariant with respect to its eliminatory design and but it does not

give high entropy.



Example 5 (Brewer’s method). The goal is again to get a πps sample of fixed size n.

Let π(k), k = 1, 2, . . . , N, be inclusion probability vectors with coordinates

π
(k)
i =

{
1 if i = k

n−1
n−πk

πi if i 6= k.

Each π(k) has coordinate sum equal to n. Let pk be proportional to n−πk
1−πk

πk and such that∑N
k=1 pk = 1. Then, as can be verified, π =

∑N
k=1 pkπ

(k). Choose π(k) with probability

pk. This implies that unit k is sampled and it is not further considered. Then a new

splitting with n changed to n− 1 is performed, etc. The procedure stops after n splits

with a sample of size n obtained.

Originally Brewer (1975) suggested this method as a draw by draw procedure. After

unit k has been selected in the first draw, the inclusion probabilities for the remaining

units are updated to π
(k)
i = βkπi, i 6= k. Since their sum should be n − 1, necessarily

βk = (n− 1)/(n−πk). The probabilities pk for the first unit to draw must be as above.

Brewer’s design is not invariant with respect to its eliminatory design but in spite

of that it has a fairly high entropy.

Example 6 (Generalized Sunter method). Sunter’s (1986) method is a list sequential

procedure for obtaining a πps sample of fixed size n. The units of U are successively gone

through in the order 1, 2, . . . , N. In the first step unit 1 is sampled with probability π1

and the inclusion probabilities for the other units are updated as πi(1) = n−I1
n−π1

πi, i ≥ 2,

where I1 is the outcome (0 or 1) for unit 1. In the SRS case the procedure reduces to

a procedure by Fan et al. (1962). The following scheme illustrates the updating:

t = 0 : π1 π2 π3 π4 . . .

t = 1 : I1 π
(1)
2 π

(1)
3 π

(1)
4 . . .

t = 2 : I1 I2 π
(2)
3 π

(2)
4 . . .

t = 3 : I1 I2 I3 π
(3)
4 . . .

Since the updated inclusion probabilities may exceed 1, the updating must be modified

sometimes. Sunter’s widely applied practical procedure is not a strict πps sampling

method. Tillé (2006, pp. 108-111) presented a remedy.

The vector π is split into two vectors π(1) and π(2), but π(2) has two alternative

forms:

π
(1)
i =

{
1 if i = 1

n−1
n−π1

πi else and π
(2a)
i =

{
0 if i = 1

n
n−π1

πi else or π
(2b)
i =

{
α if i = 1

βπi else,



where β = (maxi≥2 πi)−1 and α = n− (n− π1)β guaranteeing that
∑

U π
(2b)
i = n. The

alternative π(2b) is relevant if π
(2a)
i > 1 for some i ≥ 2. For alternative (a), the vector

π(1) is chosen with probability p1 = π1 and π(2a) with probability p2 = 1 − π1. For

alternative (b), the probabilities are p1 = (π1 − α)/(1 − α) and p2 = 1 − p1. Since

0 < α < π1 and π = p1π
(1) + p2π

(2) for both the alternatives, the procedure works.

If the alternative π(2a) is suitable, after the first random choice the sampling out-

come, 0 or 1, becomes known for unit 1. The outcome may also become known for

some other unit since π
(2a)
i may be 1 for some i ≥ 2. However, if the alternative π(2b)

is the relevant one, the sampling outcome for unit 1 is still unknown if π(2b) happens

to be chosen. But in that case at least some other unit of the population gets the new

inclusion probability 1. Thus in both cases the procedure can proceed on a smaller

population.

Like Brewer’s design, the generalized Sunter design is not invariant with respect to

its eliminatory design but it has a fairly high entropy.

Example 7 (Bulldozer method). The bulldozer method is also a list sequential method.

It is similar to Sunter’s method but the updating is not done with factors. Given weights

w2, w3, . . . , wN , usually non-negative, put

π
(1)
i =

{
1 if i = 1

πi − (1− πi)wi else
and π

(2)
i =

{
0 if i = 1

πi + πiwi else

and choose π(1) with probability π1. For π(1) and π(2) to have coordinates in [0, 1], it

is required that

−min(
1− πi

1− π1
,

πi

π1
) ≤ wi ≤ min(

πi

1− π1
,

1− πi

π1
), i = 2, 3, . . . , N,

but otherwise the weights can be freely chosen which makes the method very flexible.

The full procedure can conveniently be described in terms of sampling indicators

and updated inclusion probability vectors π(t), t = 0, 1, 2, . . . , with π(0) = π as follows:{
P (It = 1) = πt(t− 1)
πi(t) = πi(t− 1)− (It − πt(t− 1))wi(t), i > t

, t = 1, 2, . . . , N.

An inclusion probability that once has become 0 or 1 will not be changed further. The

weights wi(t), i > t, which should satisfy restrictions of the type above, may depend



on past outcomes I1, I2, . . . , It−1 but not on It. If
∑

U πi = n and
∑N

i=t+1 wi(t) = 1 for

each t, a design of fixed size n is obtained.

The bulldozer method was originally suggested by Bondesson and Thorburn (2008)

as a method for real time sampling, i.e. suitable for cases when the sampler successively

visits the units in the population or vice versa. Suitable choices of the weights are

discussed by them. With appropriate weights, every design without replacement can

be reproduced by the method.

The method can be extended as follows. Let

πi(1) =

{
π1 + (J − π1)W if i = 1
πi − (J − π1)wi else

, where J =

{
1 with probability π1

0 with probability 1− π1.

The choice W = 1 (and J = I1) yields the original procedure.

If
∑

U πi = n and W =
∑

i≥2 wi, then
∑

U πi(1) = n. Given a set of preliminary

weights wi, i ≥ 2, with sum 1, there may be some weights that do not satisfy their

restrictions. These weights can then be put equal to their bounds, and the procedure

can be used with W equal to the sum of the modified weights. If in the first step the

preliminary weights wi are chosen to be proportional to πi(1−πi) (which equals 0 if πi

is 0 or 1), and in the later steps analogous choices of all weights are made, a sampling

design of fixed size is obtained. The number of steps needed to complete the procedure

is random. However, the design has high entropy and it is also invariant with respect

to its eliminatory design.

4 The cube method for balanced sampling

An important consequence of the splitting method is the cube method, a method for

balanced sampling presented by Deville and Tillé (2004) and by Tillé (2006, Chapter 8).

In survey sampling there are often auxiliary variables, z1, z2, . . . , zM , with known values

for all the units of the population and with known totals Z1, Z2, . . . , ZM in particular.

Then it may be desirable to have a sample x such that the Horvitz-Thompson estimates

of these totals equal the known totals, i.e. such that Ẑm =
∑N

i=1
zmi
πi

xi = Zm, for

m = 1, 2, . . . ,M. With ami = zmi/πi, we then have the balancing linear restrictions

N∑
i=1

amixi = Zm, m = 1, 2, . . . ,M,



or, in matrix language, Ax = Z, where now x and Z are considered as column vectors.

Notice that Aπ = Z. We may assume that the first such restriction is the fixed sample

size restriction
∑N

i=1 xi = n. Other restrictions could originate from some stratification.

Then
∑

i∈Sm
xi = nm, m = 1, 2, . . . ,M, where the strata Sm ⊆ U are disjoint and the

numbers nm are prescribed stratum sample sizes.

When the splitting method is applied it is necessary to let the random walk proceed

within the intersection of the cube C and the affine space {x; Ax = Z}, i.e. so that{
π(t) = π(t− 1) + e(t)
Ae(t) = 0 and E(e(t)|Ft−1) = 0.

Since Aπ(t) = Z for each t, necessarily Ae(t) = 0 as required above, i.e. e(t) must

belong to the nullspace of the matrix A.

Due to the restrictions, it may happen that the procedure - the flight phase - is not

capable of ending at a corner of a cube, i.e. at a sample. Instead it ends at a point with

some coordinates strictly between 0 and 1. A special procedure - the landing phase -

is then needed to find a close corner. As a consequence, the balancing restrictions are

only approximately satisfied.

The cube method has found important practical applications, see Tillé (2006). To

increase the entropy of the sampling design, the order of the units of the population

can be randomized.

5 Final comments

The splitting method is a unifying method and its geometric approach casts new light

on πps sampling. The method leads to new sampling procedures. Several well-known

sampling procedures can also be presented in terms of splitting. Algorithms for many

splitting methods can be found in Tillé’s (2006) book. R language programs by Tillé

and Matei (2005) are available for users of R.

For practical sampling, there are other efficient designs with high entropy. See e.g.

Bondesson (2008b) or Bondesson et al. (2006). These articles treat conditional Poisson,

Sampford, and Pareto sampling. The present paper is a modified version of the article

Bondesson (2008a) in Encyclopedia of Statistical Sciences, Second edition.



References

Bondesson, L. (2008a). The splitting method for unequal probability sampling. In Encyclopedia
of Statistical Sciences, Second edition (ed. N. Balakrishnan). Wiley, New York.

Bondesson, L. (2008b). Unequal probability sampling designs with high entropy. In Encyclo-
pedia of Statistical Sciences, Second edition (ed. N. Balakrishnan). Wiley, New York.

Bondesson, L. and Thorburn, D. (2008). A list sequential sampling method suitable for real
time sampling. Scand. J. Statist. (to appear).

Bondesson, L., Traat, I. & Lundqvist, A. (2006). Pareto sampling versus Sampford and condi-
tional Poisson sampling. Scand. J. Statist. 33, 699-720.

Brewer, K.R.W. (1975). A simple procedure for πpswor. Austral. J. Statist., 17, 166-172.

Brewer, K.R.W. and Hanif, M. (1983). Sampling with Unequal Probabilities. Lecture Notes in
Statistics, No. 15. Springer-Verlag, New York.

Chaudhuri, A. and Vos, J.W.E. (1988). Unified Theory and Strategies of Survey Sampling.
North-Holland, Amsterdam.
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