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Workshop on Survey Sampling Theory and Methodology
August 25-29, Kuressaare, Estonia

® Lecture 1: Discussion of design-based versus model-based
inference. Likelihood and likelihood principle in sampling

® [ ecture 2: Different variance measures and related variance
estimation

® Lecture 3: Nonresponse 1ssues and imputation

® Lecture 4: Variance estimation in the presence of nonresponse.
Multiple imputation methods for non-Bayesian imputation
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Lecture 1:
Theoretical talk- on the foundation of survey sampling

Design-based inference

® Population (Target population): The universe of all units of interest
for a certain study: U= {1,2, ..., N}

— All units can be 1dentified and labeled
— Variable of interest y with population values Y = (Y5 Y2s--0» V)
— Typical problem: Estimate total ¢ or population mean #/N

® Sample: A subset s of the population, to be observed

® Sampling design p(s) 1s known for all possible subsets;

— The probability distribution of the stochastic sample
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Simple random sample (SRS) of size n

)
p(s)=1/ iflsl=n
n

=01f Isl#n

Estimation of the population mean, with no auxiliary variables,
use the sample mean

yS :Ziesyi/n

*Design-unbiased: E(y )=> y p(s)=t/N=Yy
* Design-variance:

2

V() =<1—f>57,

S* =ﬁ2§vl(y,. ~-y)* and f =n/N
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Problems with design-based inference

® Generally: Design-based inference 1s with respect to
hypothetical replications of sampling for a fixed population
vector 'y

® Variance estimates may fail to reflect information in a given
sample

® Difficult to combine with models for nonsampling errors like
nonresponse

* If we want to measure how a certain estimation method does
in quarterly or monthly surveys, then y will vary from quarter
to quarter or month to month — need to assume that y is a
realization of a random vector

® Today’s lecture: Likelihood and likelihood principle as
guideline on how to deal with these issues
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e Nonexistence of optimal estimators

Theorem

Let p(s) be any sampling design with p(U) <1. Then there
exists no uniformly best (minimum variance) estimator for

the total ¢
Proof
1. For any 7 unbiased and population vectory,
there exists an unbiased estimator 7, with variance O at y,,
2.1If ¢ has uniformly minimum variance, it must have variance 0

for all valuesof y

3. That 1s impossible
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Problem with design-based variance measure
Illustration 1

a) N +1 possible samples: {1}, {2},...,{N}, {1,2,...N}

b) Sampling design: p({i}) =1/2N, fori =1,..N;
p({1,2,...NDH)=1/2

c) Use y, as the estimator for the population mean y

: _ _ 1 1 _
Unbiased: E(y,) =), p(s)y, :Zi]\il—yi +—y=Yy
2N 2
Design - variance::
1 1 N-1 1 =
Var(y )=Ey.-y)*=Y" (y, -y —=—. " §2=—_.§?
(I=EG, =3 =250 =" =0 .

d) Assume we select the “sample” {1,2,...,N}. Then
we claim that the “precision” of the resulting sample
(known to be without error) is S°/2
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Problem with design-based variance measure
Illustration 2

a) Expert1:SRS and estimate y

2
Precision is measured by (1- f) S—
n

b) Expert 2:SRS with replacement and estimate y,
measures precision by S%/n
Both experts select the same sample, compute

the same estimate, but give different measures
of precision...
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The likelihood principle, LP
general model

Model: X ~ f,(x), 0 € Q; 0 are the unknown parameters in the model

* The likelihood function, with data x: 1.(6) = f.(0)

[ 1s quite a different animal than f!!

Measures the likelihood of different & values in light of the
data x

® LP: The likelihood function contains all information about the
unknown parameters

® More precisely: Two proportional likelihood functions for 6,
from the same or different experiments, should give identically
the same statistical inference
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 Maximum likelihood estimation satisfies LP, using the
curvature of the likelihood as a measure of precision
(Fisher)

 LP 1s controversial, but hard to argue against
because of the fundamental result by Birnbaum,

1962:

e LP follows from sufficiency and conditionality
principles that ’no one” disagrees with.

e SP: Statistical inference should be based on sufficient
statistics

e CP: If you have 2 possible experiments and choose one
at random, the inference should depend only on the
chosen experiment
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Radical consequences for statistical analysis

® Statistical analysis, given the observed data: The sample space 1s
irrelevant

® The usual criteria like confidence levels and P-values do not
necessarily measure reliability for the actual inference given the
observed data

® Frequentistic measures evaluate methods

— not necessarily relevant criteria for the observed data

10
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Illustration- Bernoulli trials

), CHND, ¢

X; =1 (success)with probability &

Two experiments to gain information about 4 :

E, : n =12 observations and observe Y, = Y\>, X,
E, : Continue trials until we get 3 failures (0's) and

observe Y, = number of successes

Suppose the resultsare y, =y, =9

11
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The likelihood functions:
V(0)=(s)0°(1-6)°  binomial
$(0)=(s)0°(1-0)°  negativebinomial
Proportional likelihoods: léz) @)=/ 4)[;1) (0)

LP: Inference about & should be identical in the two cases

Frequentistic analyses give different results:

Fex.test H,: 0 =1/2 against H,: 0 >1/2
(E,,9):P-value=0.0730 (E,,9):P-value=0.0327

because different sample spaces: (0,1,..,12) and (0,1,...)

12
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Frequentistic vs. likelihood

® Frequentistic approach: Statistical methods are evaluated pre-
experimental, over the sample space

® LP evaluate statistical methods post-experimental, given the data

® History and dicussion after Birnbaum, 1962: An overview in
”Breakthroughs in Statistics, 1890-1989, Springer 1991

13
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Likelihood function in design-based inference

e Unknown parameter: Y=(}, Vy---;)y)
e Data: x = {(la yobs,i) e S}

* Likelihood function = Probability of the data,
considered as a function of the parameters

Q. ={y:y, =Y, fori s}

e Sampling design: p(s)

L . ps)ifyeQ,
e Likelihood function: [ (y)= ,
0 otherwise

» All possible y are equally likely !!

14
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® Likehood principle, LP : The likelihood function contains all
information about the unknown parameters

® According to LP:

— The design-model 1s such that the data contains no
information about the unobserved part of y, ¥,

— One has to assume in advance that there 1s a relation
between the dataand 'y, .:
¢ As a consequence of LP: Necessary to assume a model

— The sampling design 1s 1rrelevant for statistical inference,
because two sampling designs leading to the same s will
have proportional likelihoods

15
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Let p, and p, be two sampling designs. Assume we get the same
sample s 1n either case. Then the data x are the same and ) _are
the same for both experiments.

The likelihood function for sampling design p,, i = 0,1:

p()if yeQ,
li,x (y) — .
O otherwise

=1, (W), (¥)=p(s)/ py(s) if yeQ,
and then for all y :

L) =28 @)
Po (s)

16
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® Same inference under the two different designs. This 1s 1n direct
opposition to usual design-based inference, where the only
stochastic evaluation is thru the sampling design, for example the
Horvitz-Thompson estimator

® Concepts like design unbiasedness and design variance are
irrelevant according to LP when it comes to do the actual
statistical analysis.

® Note: LP is not concerned about method performance, but the
statistical analysis after the data have been observed

® This does not mean the sampling design 1s not important. It 1s
important to assure we get a good representative sample. But once
the sample is collected the sampling design should not play a role

in the inference phase, according to LP

17
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Model-based inference

® Assumes a model for the y vector
® Conditions on the actual sample
® Use modeling to combine information

® Problem: dependence on model

— Introduces a subjective element, but no different than
usual statistical modeling

— almost impossible to model all variables in a survey

® Design approach is “objective” in a perfect world of no
nonsampling errors

18
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Model-based approach
Vis Vose-rr ¥y are realized values of

random variablesY,,Y,,...Y,,

Two stochastic elements:
1) sample s ~ p(-) 2) (Y, Y,,..Yy) ~ f,

Treat the sample s as fixed
[Model-assisted approach: use the distribution assumption

of Y to construct estimator, and evaluate according to
distribution of s, given the realized vector y]

We can decompose the total ¢ as follows:

t:Zi]ilyi :Ziesyi+2iesyi

19
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Since Zies y, 1s known, the problemis to estimate

7= Zigs y,, therealized valueof Z = Z Y.

igs !

e The unobserved z is a realized value of the random
variable Z, so the problem is actually to predict the
value 7 of Z.

Can be done by predicting each unobserved y:: Yl A&s
Estimator: T,.,,=> . v, +> Y. => y,+Z
Zisa predictor for z

e The prediction approach, the prediction based estimator

Determine ﬁ by modeling,

similar to the model - assisted approach

20
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Predictive likelihood approach

® Prediction problem. May use a likelihood approach
® Data: x, unknown: z. Joint distribution: f,(x,z2)
® Joint likelihood for the unknown quantities:

[, (z,0) = fp(x,2)

® Corresponding likelihood principle 1s implied by principles of
prediction suffiency and conditionality

®* Aim: To develop a partial likelihood for z, L(zlx), from [,

® Any such likelihood 1s called a predictive likelihood and gives rise
to one particular prediction method

21
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One basic predictive likelihood: Profile PL:

L, (zlx)=max,[ (z,0)=max, f,(x,z)

Any predictive likelihood L 1s assumed normalized as a
probability distribution in Z

The mean in L, E,(Z), 1s a predictor for Z

22
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3 typical models

I. A model for business surveys, the ratio model:
Y, = pBx. +&, with E(¢,)=0,Var(e,)=0c"x, and Cov(g;,e,)=0
< E(Y) = px. ,Var(Y,)=c"x, and Cov(Y,,Y;)=0

I1. A model for social surveys, simple linear regression:
Y. =B+ px +¢ , E(g)=0, Var(¢,)=c" and Cov(g;, ;) =0

e EX: x;1s a measure of the ““size” of unit i, and y, tends to
increase with increasing x;. In business surveys, the
regression goes thru the origin in many cases

III. Common mean model:

EXY)=p4,Var(Y) = o’ and the Y.'s are uncorrelated

23
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Remarks:

1. The model-assisted regression estimator has often the form
freg = Zfilﬁ., Yl = ﬁxi in case of a ratio model

2. The prediction approach makes it clear: no need to
estimate the observed y;

3. Any estimator can be expressed on the “prediction
form:
f = Zies Yl T ZA?
letting Z, =T -Y._Y,
4. Can then use this form to see if the estimator
makes any sense

24



-
e Statistisk sentralbyra ,
.............

Ex 1. i\:Ny = zesy +(N n)yS Ziesyi+2i@"ys
Hence,z=z.

IS

y, and y, =y ,forall ies

Ex.2 fr =2 vilm, and 7, =nx, /X, X =) x

Reasonable sampling design when y and x are positively correlated

lll

A X -y, X
Ly = Z,-ESW =2 ies Vit 2ics Vi (; - 1]

X —nx; .
o ZIES Yi _Zzes i [( )jz X = Zies Yi + <HT
X —nx IZs
P

A — x — A.
<HT Ziezs'BHT i jes Y

LS.+ 1s a rather unusual regression coefficient

25
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Model-based estimators (predictors)

1. Predictor: T = PR A Z
2. Model parameters: 6
3. T is model - unbiased if E,(T~T15)=0 V0, T=> Y,

4. Model variance of model-unbiased predictor 1s the
variance of the prediction error, also called the

prediction variance
Var,(T =T |s)=E,(T -T)*s)

26
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Prediction variance as a variance measure for the
actual observed sample

[llustration 1, slide 5

N +1 possible samples: {1}, {2},....,{N}, {1,2,...N}
Use T = NY . as the estimatorfor the populationtotal 7

Assume we select the “sample” {1,2,...,N}.
ThenT =NY =T
Prediction variance: Var(f —T)=Var(0)=0

Illustration 2, slide 6: Exactly the same prediction
variance for the two sampling designs

27
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Linear predictor: T = Z a,(s)Y,

5. Optimality:
f’o 1s the best linear unbiased (BLU) predictor for 7" if

1) f’o 1s model - unbiased

2) f“o has uniformly minimum prediction variance among all

model - unbiased linear predictors:

For any model - unbiased linear predictor T

Var,(T, —T) < Var,(T —T) for all @

28
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Lecture 2: Different variance measures and related
variance estimation

® We have seen two variance measures:

Design-based variance

Model-based (prediction) variance.
® A third variance measure: Anticipated variance (method variance)
® A fourth variance measure:

Variance in a normalized predictive likelihood

29
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Bootstrap methods for estimating design-based
variance

e Bootstrap: Unaided efforts, by one’s own bootstrap, self-
reliant

e Mention 2 standard methods, for estimating a population
quantity 6, function of the population mean

Method 1. Without-replacement bootstrap, BWO

1. Construct a pseudo population U* from the sample s
If 7, 1s the inclusion probability for unit k.

U":1/7x, copiesof eachy, ,kes
Population size: N* =Y 1/7, =N

Population total :#" = >y, (1/7,) = Lr

30
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IMustration:  Simple random sample::

/z, =N/n,N*=N,t" =Ny

A

2. From U* draw B independent ’resamples” with replacement,
using the same sampling design as for the original sample s

3. Estimates : 9 6’ . Values of original estimator 0.
A% B Ax
0" = E sz1 0,

Variance estimate : V(@) ——Zb 1(6 — 9" )2

Problem: Does not yield reasonable estimates except in
the simplest sampling plans

31
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Method 2, developed for stratified samples, BWR

e Draw resamples directly from the sample

* Problem: The original observations are not
independent

» Rescale the resampled values:
 For each stratum of simple random sample s ; n,N

1. Resample: Simple random sample from s, with replacement :
{y;i=1,...,m}

m

1/2
Computeiiﬁis{ (1—f)} vi-3,) f=n/N

n-—1

32
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2. B independent resamples. Each time compute
éb — 6 based on {y;i=1,...,n}
~ 1lwp =~
0 = Ezb:1 gb
3. Varians estimate :

. 1 <5 .~ =~
VBS ZEZM(‘% —-0)

e Can be used in complex estimation problems.

e Consistent variance estimator as the number of strata
goes to infinity

* The expected value over the bootstrap samples reduces
to the usual variance estimate in the linear case

33
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Anticipated variance (method variance)

We want a variance measure that tells us about the
expected uncertainty in repeated surveys

1. Conditional on the sample s, with model - unbiased T:

Var(T —T) measures the uncertainty for this particular sample s

2. The expected uncertainty for repeated surveys:

E {Var(T —T)}, over the sampling distribution p(-)

3. This 1s called the anticipated variance.

4. It can be regarded as a variance measure that describes
how the estimation method 1s doing in repeated surveys

34
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If 7 is not model - unbiased, we use
E{E(T-T)’}

as a criterion for uncertainty, the anticipated mean square error

Note : If T is design - unbiased then
E{E(T-T)’}=E(E,(T-T)* 1Y)}
and

2 2 2 2 2
E(T-T)1Y=y)=E, (—t) =Var, ()

And the anticipated MSE becomes the expected design-
variance, also called the anticipated design variance

E {E(T -T)’}=E{Var,(T)}

35
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Example:
Ratio model and simple random sample

Model :
Y, =px; +¢,,E(¢,)=0 and Var(¢,) =o’x,

Y,...,Yy are uncorrelated , Cov(¢;, ;) =0

Auxiliary information x known for the whole population
BLU predictor:
Tpred = Zies Yl + Zigs IBoptxi
where ﬁopt is the best linear unbiased estimator (BLUE) of [
B _ Zies Yl
opt
Zi es i

=R

36
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=Y Y. +RY_ x =X -R=T,

pred

where X =>"" x,

The usual ratio estimator : Approximately design unbiased

Let x, =) . x,/(N—n) andx=X/N

IZs

Var(T red — 1) = Var(RZ x,—>. Y

IZs l

N — +
= (N —n)*x’ o’ 2 4 GA(N-m)% =(N-n)o’x {( X, + 1, }
nx, nx,
_(N n)o_zx N— Nzl_f.x_rxo_z
nx, noX,

37
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2 1-f . X

n 'Ep(?c) n

Unbiased estimator of o 2: Usual least squares estimator:

21

Zies i(Yz - I/éxi )2
X

i

n—1

Design-based variance estimate:

1-f _ x 1 A
SRS(tR) N*. ! X5 Zs(yi _in)2
n x: n—1

S

38
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Estimation of model-based variance:
Robust variance estimation
® The model assumed is really a “working model”

® Especially, the variance assumption may be misspecified and
1t 1s not always easy to detect this kind of model failure

— like constant variance

— variance proportional to size measure x;

® Standard least squares variance estimates 1s sensitive to
misspecification of variance assumption

® Concerned with robust variance estimators

39
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The ratio estimator
Working model:
Y,=px. +¢,,E(g)=0 and Var(s,)=0"x,

Y.....,Y, are uncorrelated , Cov(¢;,&;) =0

Under this working model, the unbiased estimator of
the prediction variance of the ratio estimator 1s

40
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This variance estimator i1s non-robust to misspecification
of the variance model.

Suppose the true model has
E(Y,)) = px, and Var(Y,))=ocv(x,)

Ratio estimator 1s still model-unbiased but
prediction variance 1S now

Var(fR —T)= (ZigsxifVar(}AR) +o° Ziésv(xi)

2
= (Zies i )2 G(ZZiE;V());i) T 02 Ziesv(xi)

2=2
= 0-2((]\] ;2,;)2 ~r Ziesv('xi) T Ziésv('xi)j

S

41



_——
=N s G
..........

2=2
Var(T, —T) =a{(N _f’; Ay +(N—n)17r)

nx,

21f

O'

(=W, 1%)+f5,)

v, = Ziesv(xi)/n and v, =) v(x;)/(N—n)

Moreover, E(6° )+ 0 :

> I E(Y, - Rx)
llesx

l

E(6%)= I
n_

1 1{(v/x)s —VS/)?S}} ,(v/x), =lziesv(xl.)/xi
n

n_

=0'2{(v/x)s +

42
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Robust variance estimator for the ratio estimator

Var(fy -T)=o*N* 2L (0= )5, 1702 + £ -7,

n
1 GG ix)  f T -7, (R IR
n

=o*N

_ 1-f _ _
~ov, N’ f(xr/xs)z,
n
the leading term in the prediction variance

_ 1 1
and: azvs =—Z. O'ZV(X,-)=—Z. Var(Y)
n les n les

(Y, — )’}

IES

0%, = O ) = EC Y

43
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Suggests we may use:

Leading to the robust variance estimator:

I-f 1
n n-—1

V (T.-T)=(x./%)>-N > (Y, —Rx,)

Almost the same as the design variance estimate 1n SRS:

2 1-f 1
n n-—1

Vees (Fo) = (X/%.)2 N > (v, —Rx;)’

A new interpretation of this variance estimate!!

44
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Approximately model-unbiased

Can we do better?
Require estimator to be exactly unbiased under ratio

model, v(x) = x:

When v(x) = x: E{—Z Y, —R-x,)’)

[ASK)

_ - RV 2,
_IZiesE(Yi in) n_lzzies(7 xl(

=0 x( _l ij 2 Z,es(

n x

s

45
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The prediction variance when v(x) = x:

2
E{(V. , (T,—-T)}=N> 1_f()_c,,2/)_cs)02[ _l.S_xj
n

So arobust variance estimator that 1s exactly
unbiased under the working model , v(x) = x:

-1
R R X 1 2 A A
VR,rob(TR _T)}:%[ _;%j Vrob(TR _T)
:{1—n‘1(s§/?cf)}—l(x;c/?cf)-Nzl_f- 112, (Y, — Rx,)*
n n— IES

={1-n"" (s /X)) (X, 1 %) - Vs (T2)

46



-
Statistisk sentralbyra ,
Statistics Norway

General approach to robust variance estimation

1. Find robust estimators of Var(Y)), that does not depend
on model assumptions about the variance

2. f - Zies Wisti

Var(T-T)=Y_ _(w,—1)*Var(Y)+ Y Var(¥)

3. Fories:V(Y,)=(, - )
[, estimate E(Y;) under true model
4. Estimate only leading term in the prediction variance,

typically dominating, or estimate the second term from
the more general model

47
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Predictive likelihood variance

Predictive likelihood for Z, normalized as a
probability distribution: L(z)

Predictive likelihood variance, V,(2),
1s the variance in L(z)

Vpl(Z) 1s based on the data only, and 1s therefore
automatically a ’variance estimate” or if you like, a data-
based measure of uncertainty

48
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Ratio model —estimating the total

Z=) .Y tobe predicted

The profil predictive likelihood for Z 1s such that

Z—Iéziﬂxi

OA_N\/n—l\/l—f .x_,,x
n n X

S

~ ¢, —distribution

49
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Predictive mean: g Z(Z):fgz X.
p igs 1

—SE, (T=Y. Y +RY, x =X R=T,

Predictive variance:

VI(Z): n_l&zNzl_f .x_rx
n—2 noooXx,
A v
n=2

50
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®* Model-based approach:
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(ch. 5 deals with robust variance estimation)
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® Boostrap methods for variance estimation
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