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Some inference issues regarding modeling, variance

estimation and nonresponse in survey sampling

Jan Bjørnstad, Statistics Norway, email: jab@ssb.no

Workshop on Survey Sampling Theory and Methodology

August 25-29, Kuressaare, Estonia

• Lecture 1: Discussion of design-based versus model-based
inference. Likelihood and likelihood principle in sampling

• Lecture 2: Different variance measures and related variance
estimation

• Lecture 3: Nonresponse issues and imputation

• Lecture 4: Variance estimation in the presence of nonresponse. 
Multiple imputation methods for non-Bayesian imputation



2

Lecture 1: 

Theoretical talk- on the foundation of survey sampling

Design-based inference

• Population (Target population): The universe of all units of interest

for a certain study: U = {1,2, …, N}

– All units can be identified and labeled

– Variable of interest y with population values

– Typical problem: Estimate total t or population mean t/N

• Sample: A subset s of the population, to be observed

• Sampling design p(s) is known for all possible subsets;

– The probability distribution of the stochastic sample

),...,,( 21 Nyyy=y
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Simple random sample (SRS) of size n
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Estimation of the population mean, with no auxiliary variables, 

use the sample mean

•Design-unbiased: 

• Design-variance: 
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Problems with design-based inference

• Generally: Design-based inference is with respect to 
hypothetical replications of sampling for a fixed population 
vector y

• Variance estimates may fail to reflect information in a given 
sample

• Difficult to combine with models for nonsampling errors like 
nonresponse

• If we want to measure how a certain estimation method does 
in quarterly or monthly surveys, then y will vary from quarter 
to quarter or month to month – need to assume that y is a 
realization of a random vector

• Today’s lecture: Likelihood and likelihood principle as 
guideline on how to deal with these issues
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• Nonexistence of optimal estimators

Theorem

Let p(s) be any sampling design with p(U) <1. Then there

exists no uniformly best (minimum variance) estimator for 

the total t

impossible isThat  3.
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Problem with design-based variance measure

Illustration 1
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a) N +1 possible samples: {1}, {2},…,{N}, {1,2,…N}

b) Sampling design: p({i}) =1/2N , for i = 1,..,N ;   

p({1,2,…N})= 1/2

d) Assume we select the “sample” {1,2,…,N}. Then 

we claim that the “precision” of the resulting sample 

(known to be without error) is 2/
~2
S
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Problem with design-based variance measure

Illustration 2
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The likelihood principle, LP

general model

• LP: The likelihood function contains all information about the

unknown parameters

• More precisely: Two proportional likelihood functions for θ, 

from the same or different experiments, should give identically

the same statistical inference

model in the parametersunknown   theare  ; ),(~ :Model θθθ Ω∈xfX

• The likelihood function, with data x: )()( θθ xx fl =

l is quite a different animal than f !!

Measures the likelihood of different θ values in light of the

data x 
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• Maximum likelihood estimation satisfies LP, using the

curvature of the likelihood as a measure of precision

(Fisher)

• LP is controversial, but hard to argue against

because of the fundamental result by Birnbaum, 

1962:

• LP follows from sufficiency and conditionality

principles that ”no one” disagrees with.

• SP: Statistical inference should be based on sufficient

statistics

• CP: If you have 2 possible experiments and choose one

at random, the inference should depend only on the

chosen experiment
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Radical consequences for statistical analysis

• Statistical analysis, given the observed data: The sample space is 

irrelevant

• The usual criteria like confidence levels and P-values do not 

necessarily measure reliability for the actual inference given the

observed data

• Frequentistic measures evaluate methods

– not necessarily relevant criteria for the observed data
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Illustration- Bernoulli trials
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The likelihood functions:

binomial negative        )1()()(

binomial        )1()()(
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Frequentistic analyses give different results:
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Frequentistic vs. likelihood

• Frequentistic approach: Statistical methods are evaluated pre-
experimental, over the sample space

• LP evaluate statistical methods post-experimental, given the data

• History and dicussion after Birnbaum, 1962: An overview in 
”Breakthroughs in Statistics,1890-1989, Springer 1991”
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Likelihood function in design-based inference

)...,,( 21 Nyyy=y
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• Unknown parameter:

• Data:

• Likelihood function = Probability of the data, 

considered as a function of the parameters

• Sampling design: p(s)

• Likelihood function:
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• Likehood principle, LP : The likelihood function contains all 
information about the unknown parameters

• According to LP:

– The design-model is such that the data contains no 
information about the unobserved part of y, yunobs

– One has to assume in advance that there is a relation 
between the data and yunobs : 
�As a consequence of LP: Necessary to assume a model

– The sampling design is irrelevant for statistical inference, 
because two sampling designs leading to the same s will 
have proportional likelihoods
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Let p0 and p1 be two sampling designs. Assume we get the same 

sample s in either case. Then the data x are the same and Ωx are

the same for both experiments.

The likelihood function for sampling design pi , i = 0,1:
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• Same inference under the two different designs. This is in direct 

opposition to usual design-based inference, where the only 

stochastic evaluation is thru the sampling design, for example the 

Horvitz-Thompson estimator

• Concepts like design unbiasedness and design variance are 

irrelevant according to LP when it comes to do the actual 

statistical analysis. 

• Note: LP is not concerned about method performance, but the 

statistical analysis after the data have been observed 

• This does not mean the sampling design is not important. It is 

important to assure we get a good representative sample. But once 

the sample is collected the sampling design should not play a role 

in the inference phase, according to LP
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Model-based inference

• Assumes a model for the y vector

• Conditions on the actual sample

• Use modeling to combine information

• Problem: dependence on model

– Introduces a subjective element, but no different than 

usual statistical modeling

– almost impossible to model all variables in a survey

• Design approach is “objective” in a perfect world of no 

nonsampling errors
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Model-based approach
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We can decompose the total t as follows:

Treat the sample s as fixed

Two stochastic elements:

θfYYYps N ~),...,( 2)                )(~ sample )1 21⋅

[Model-assisted approach: use the distribution assumption 

of Y to construct estimator, and evaluate according to 

distribution of s, given the realized vector y]
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• The unobserved z is a realized value of the random 

variable Z, so the problem is actually to predict the 

value z of Z.

Can be done by predicting each unobserved yi: siYi ∉,ˆ
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 modeling,by  ˆ Determine iY
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Predictive likelihood approach

),(),( zxfzlx θθ =

• Prediction problem. May use a likelihood approach

• Data: x, unknown: z. Joint distribution:  

• Joint likelihood for the unknown quantities: 

• Corresponding likelihood principle is implied by principles of

prediction suffiency and conditionality

• Aim: To develop a partial likelihood for z, L(z|x), from lx

• Any such likelihood is called a predictive likelihood and gives rise 

to one particular prediction method

),( zxfθ
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One basic predictive likelihood: Profile PL:

),(max),(max)|( zxfzlxzL yp θθθ θ ==

Any predictive likelihood L is assumed normalized as a 

probability distribution in Z

The mean in L, Epl(Z), is a predictor for Z
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I.  A model for business surveys, the ratio model:

0),( and  )( ,0)(    with 2 ===+= jiiiiiii CovxVarExY εεσεεεβ

0),( and  )( , )( 2 ===⇔ jiiiii YYCovxYVarxYE σβ

II. A model for social surveys, simple linear regression:

0),( and  )(  ,0)(  , 2

21 ===++= jiiiiii CovVarExY εεσεεεββ

III. Common mean model:

eduncorrelat are  '  theand )(  ,  )( 2
sYYVarYE iii σβ ==

• Ex: xi is a measure of the “size” of unit i, and yi tends to 

increase with increasing xi. In business surveys, the 

regression goes thru the origin in many cases

3 typical models
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1. The model-assisted regression estimator has often the form

model ratio a of casein   ˆˆ  ,ˆˆ
1 ii

N
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2. The prediction approach makes it clear: no need to 

estimate the observed yi

Remarks:

3. Any estimator can be expressed on the “prediction 
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Model-based estimators (predictors)

)|)ˆ(()|ˆ( 2
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1. Predictor: ZYT
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  ,  0)|ˆ( if  unbiased-model is ˆ  .3 θθ

2. Model parameters: θ

4. Model variance of model-unbiased predictor is the 

variance of the prediction error, also called the 

prediction variance
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Prediction variance as a variance measure for the 

actual observed sample

TYNT s   totalpopulation for theestimator   theas ˆ     Use =

0)0()ˆ( ==− VarTTVar

N +1 possible samples: {1}, {2},…,{N}, {1,2,…N}

Assume we select the “sample” {1,2,…,N}.

Prediction variance:

Illustration 1, slide 5

TYNT ==ˆThen 

Illustration 2, slide 6: Exactly the same prediction 

variance for the two sampling designs
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:predictorslinear  unbiased-model
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Lecture 2: Different variance measures and related

variance estimation

• We have seen two variance measures: 

Design-based variance

Model-based (prediction) variance. 

• A third variance measure: Anticipated variance (method variance)

• A fourth variance measure: 

Variance in a normalized predictive likelihood
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Bootstrap methods for estimating design-based

variance

• Mention 2 standard methods, for estimating a population

quantity θ, function of the population mean

• Bootstrap: Unaided efforts, by one’s own bootstrap, self-

reliant

Method 1. Without-replacement bootstrap, BWO 

1. Construct a pseudo population U* from the sample s
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Illustration:
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:sample random Simple

π

2. From U* draw B independent ”resamples” with replacement, 

using the same sampling design as for the original sample s
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the simplest sampling plans
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Method 2, developed for stratified samples,  BWR

• Draw resamples directly from the sample

• Problem: The original observations are not 

independent

• Rescale the resampled values:

• For each stratum of simple random sample s  ; n,N

( ) Nnfyyf
n

m
yy

miy

s

sisi

i

/   ,)1(
1

~ :Compute

},...,1;{

:treplacemen with , from sample  random Simple :Resample 1.

2/1

=−




 −
−

+=

=

∗

∗



33

∑ ==

==

B

b b

ib

B

niy

1

~1~

},...,1;~{on  based  ˆ  
~

θθ

θθ

2. B independent resamples. Each time compute

∑ = −
−

= B

b bBS
B

V
1

2)
~~

(
1

1ˆ

:estimate Varians .3

θθ

• Can be used in complex estimation problems.

• Consistent variance estimator as the number of strata 

goes to infinity

• The expected value over the bootstrap samples reduces

to the usual variance estimate in the linear case
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Anticipated variance (method variance)
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3. This is called the anticipated variance. 

4. It can be regarded as a variance measure that describes 

how the estimation method is doing in repeated surveys
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Example:

Ratio model and simple random sample
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Estimation of model-based variance:

Robust variance estimation

• The model assumed is really a “working model”

• Especially, the variance assumption may be misspecified and 

it is not always easy to detect this kind of model failure

– like constant variance 

– variance proportional to size measure xi

• Standard least squares variance estimates is sensitive to 

misspecification of variance assumption

• Concerned with robust variance estimators
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The ratio estimator
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This variance estimator is non-robust to misspecification 

of the variance model.

Suppose the true model has
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Ratio estimator is still model-unbiased but 

prediction variance is now
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Robust variance estimator for the ratio estimator
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Suggests we may use:
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So  a robust variance estimator that is exactly  

unbiased under the working model , v(x) = x:

The prediction variance when v(x) = x:
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General approach to robust variance estimation
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Predictive likelihood variance

Predictive likelihood for Z, normalized as a 

probability distribution: L(z)

Predictive likelihood variance, Vpl(Z), 

is the variance in L(z)

Vpl(Z) is based on the data only, and is therefore

automatically a ”variance estimate” or if you like, a data-

based measure of uncertainty
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Ratio model –estimating the total

The profil predictive likelihood for Z is such that
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Predictive mean: 
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