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Abstract 

 Informative sampling can severely bias all kinds of sample estimates. In this paper we 

concentrate on estimation of covariance matrix. First, the independence in population is 

considered and conditions of it’s preserving in the sample are presented. Possibilities of 

estimating covariance matrix analytically are illustrated on the basis of multivariate exponential 

family and parameters of sample distribution derived. Multivariate normal distribution is 

examined closer and parameters of sample distribution are derived explicitly in matrix form. 

Some possibilities of increasing the efficiency of estimation in general case are also proposed.  

1 Introduction 

Present paper is a brief summary of the author’s master thesis defended at the University of 

Tartu in June 2008.  

In case of non-ignorable or informative sampling the sampling scheme explicitly or implicitly 

depends on the response variable. As a result, the sample distribution of the response variable 

does not reflect the population distribution and does not approximate it after increasing the 

size of a sample either. The sample estimates are biased for the population parameters. In this 

paper we concentrate on the sample covariance matrix and study the effect of the informative 

sampling design on it.  

In section 2 we present main notations and relationships, in section 3 inspect the case of 

independence of variables in the population, in section 4 describe the relationship between 

sample and populations distribution in case of multivariate exponential family, in section 5 

present those relationships in matrix form for multivariate normal distribution and finally in 

section 6 touch on the estimation of covariance in general case and possibilities of improving 

it.   



2 Population and sample distributions 

Let U = {1... N} define the finite population of size N. In what follows we consider single 

stage sampling with inclusion probabilities Pr( )i i sπ = ∈ , i = 1 ... N.  The vector of study 

variables at object i is denoted by )',...,,(
21 k

iiii yyy=y , where k is the number of study 

variables.  Auxiliary variables are denoted by xi.  Let )|( iipf xy  be the probability density 

function (pdf) of study variables.  Vector of parameters indexing fp is denoted by 

),...,,( 21 mθθθ=θ .  

Sample from population is denoted by s and consists of n objects from U selected according 

to some sample selection scheme with inclusion probabilities iπ .  In practice, iπ  often 

depends on the population values of outcome variable(s), the values of the auxiliary variables 

and possibly values of design variables used for the sample selection but not included in the 

working model under consideration. 

It can be shown (Pfeffermann et al., 1999), that for random vectors (ui,vi), i ∈ U, sample pdf 

can be expressed through the population pdf as follows: 
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Expectations Ep and Es denote here the expectation under the population and sample 

distribution respectively.  

In following sections we consider the case without auxiliary variable x for simplicity. 

3 Independence in the population 

Consider the case when variables  y
1
, .., y

k
  are independent in the population. Then 

population pdf can be rewritten as the product of marginal distributions: 

1 2( ) ( ) ( ) ... ( )k

p i p i p i p if f y f y f y= ⋅ ⋅ ⋅y . 

If the sample selection probabilities have expectations in factorized form, 

1( | ) ( | ) ... ( | )k

p i i p i i p i iE E y E yπ π π= ⋅ ⋅y , 

then variables are independent in sample as well. The independence follows since 
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So, even in the case of highly informative sampling, the independence between variables can 

be preserved if effects of different variables in the inclusion probabilities are separated from 

one another.  

4 Population distribution from multivariate exponential family 

In some cases sample covariance can be derived analytically.  

Let the population distribution belong to the multivariate exponential family, i.e.  
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where η is the vector of canonical parameters, ℜ→ℜ⋅ kh :)(*  and ℜ→ℜ⋅ k

jT :)(  are 

functions of y, ℜ→ℜ⋅ mB :)(  is the function of η. 

If inclusion probabilities also have exponential form: 
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then it can be shown that sample distribution belongs to the same family as population 

distribution but with different parameters, jjj p+=ηη *
.  The following illustrates this 

feature on the example of multinomial distribution.  

Example 1. Consider the variables ),,( zyt=y  having multinomial distribution with 

parameters n and ),,( zyt ppp=p , i.e.  
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Multinomial distribution belongs to multivariate exponential family, since 
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Vector of canonical parameters is thus )log,log,(log zyt ppp=η , ( )i iT y=y , where  

ty =1 , yy =2 , zy =3 . 

If inclusion probabilities have the form 

{ }zcybtacE p ⋅+⋅+⋅= exp)|( 0yπ , 

then sample distribution is also multinomial with canonical parameters 

)log  ,log  ,(log* cpbpap zyt +++=η . The vector of probabilities of sample 

distribution is thus ),,(* c
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analytical expressions of sample parameters we can compare correlations of variables t and y 

in population and sample. The correlation coefficients are (respectively) 
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So, for example, if a and b indexing inclusion probabilities are both positive (which means 

that objects with large t and y prevail in the sample), then negative correlation between t and 

y in the sample is stronger than that in the population.  

5 Multivariate normal population distribution 

Although multivariate normal distribution belongs to the exponential family, it is more 

convenient to present the results for it in matrix form, so the parameters of sample 

distribution will be derived here explicitly.  

The multivariate normal density function in matrix form is 
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where µ is the vector of expectations and ∑ is covariance matrix.  

The inclusion probabilities are again in exponential form, but we now present them in matrix 

form: 



)''exp()|( 0 ybAyyy += cE p π . 

It can be shown (Aru, 2008), that sample distribution is in this case again normal with vector 

of expectations  λ and covariance matrix Ω: 

)()2( 111 bµΣAΣλ +−= −−− ,  

1 1( 2 )− −= −Ω Σ A .  

From the above expressions we can make some conclusions on the relationship between 

population and sample covariance matrixes in case of normal distribution: 

• Sample covariance matrix is different from population covariance matrix 

only if matrix A is different from the matrix of zeros, that is if the 

expectation of inclusion probabilities depends on the squares and products of 

study variables. If A=0 then the mean changes but not the structure of 

dependencies.   

• If variables are independent in the population, i.e. ∑ is diagonal, then 

independence is preserved in the sample iff A is also diagonal. This fact 

confirms previous results.  

• With appropriate A the structure of dependencies between variables can 

drastically change: dependent variables can become independent, and vise 

versa, the sign of covariance can change.  

6 Estimation in general case 

In general case a population covariance can be estimated with ordinary weighted sample 

covariance.  But using conditional expectations of weights with respect to study variables 

instead of ordinary sample weights can potentially decrease the variability of estimates. To 

calculate conditional expectation, a model should be fitted to the inclusion probabilities with 

study variables as auxiliary variables.   

This method was tested in a simulation study based on real data from Estonian EU-SILC  

Survey. Conditional expectation of inclusion probabilities was calculated with several models 

and results show that with appropriate model decrease in mean square error of covariance 

estimates is ca 5-13%. This agrees with the results of earlier studies on informative sampling  

that incorporating modelling of inclusion probabilities into estimation procedure increases the 

efficiency of estimates.  
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