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Abstract

Two types of calibrated estimators of the finite population covariance are consid-
ered. The estimators of the first type are defined by some different calibration
equations and loss functions. They may use one or several weighting systems.
The estimators of the second type are constructed using linear regression model,
some calibration equations and loss functions. The estimators are compared by
simulation.

1 Introduction

The calibration method introduced by Deville and Särndal (1992) was used to improve the estimators of

the finite population total using known auxiliary variables. The estimation of more complicated finite

population parameters is also important, but the literature on this topic is not wide. The calibrated

estimator of the ratio of two totals was introduced by Krapavickaitė and Plikusas (2005). Harms and

Duchesne (2006), Rueda, Mart́ınez, Mart́ınez and Arcos (2007) considered calibrated estimators of

quantiles and estimation of the distribution function with calibration methods. In the paper Plikusas

and Pumputis (2007) some calibrated estimators of the finite population covariance were introduced.

These estimators have one weighting system and are defined by using different calibration equations

and different loss functions. The definition given in this paper may be extended to the case of multiple

weighting systems. Sitter and Wu (2002) proposed model-calibrated method to estimate the finite

population covariance. The estimators are constructed under the assumption that the relationship

between study variables y, z and auxiliary variable x = (x1, x2, . . . , xJ) can be described by a linear

regression model and using some calibration equations and loss function. In the following sections we

recall these estimators and present some simulation study.

2 Calibrated estimators of the finite population covariance

Consider a finite population U = {u1, u2, . . . , uN} of N elements. Let y and z be two study variables

defined on the population U and taking real nonnegative values. The values of the variables y and z

are not known. Suppose the known auxiliary variables a and b are available.

Let the covariance
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2.1 Estimators with one weighting system

In the book (Särndal, Swensson, Wretman 1992, p. 187) one can find well-known only design based

estimator of the covariance

Ĉov(y, z) =
1

N − 1

∑
k∈s

dk

(
yk −

1

N

∑
k∈s

dkyk

)(
zk −

1

N

∑
k∈s

dkzk

)
, (1)

here dk− sample design weights.

We modify the design weights dk and consider the calibrated estimator of the covariance of the following

shape
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The new weights wk are defined under the following conditions:

a) the weights wk satisfy some calibration equation;

b) the distance between the weights dk and wk is minimal according to some loss function L.

The conditions a) and b) can be specified in different ways. Let us introduce three different calibration

equations:
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We will call three types of calibration, respectively to the calibration equations listed above, as nonlinear

calibration, linear calibration and calibration of the totals.

Below we present the list of loss functions that can be used for the final specification of calibrated

weights wk:
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2.2 Estimators with two weighting systems

Let us consider some other, more general estimators of the finite population covariance, which are

constructed using two weighting systems and having the following shape:
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here the weights w
(1)
k and w

(2)
k satisfy one of the calibration equations proposed and minimize the

distance between the design weights and calibrated weights according to some loss function. For

example, the weights w
(1)
k can be defined using the linear calibration and loss function L1, whereas the

weights w
(2)
k can be calculated using the calibration of totals and the same loss function.

Many experiments showed, that estimators, which use two systems of weights, are more precise. They

have smaller variance, mean square error and coefficient of variation.

3 Model-calibrated estimators of the finite population covari-
ance

Consider a finite population U = {u1, u2, . . . , uN} consisted of N elements. Let’s associate unit ui with

the vectors yi and xi of study and auxiliary variables values. In the paper of Sitter and Wu (2002) a

quadratic finite population function is taken as a parameter of interest. Every quadratic function can

be defined as

T =
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i=1
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φ(yi,yj),

here φ(·, ·) is a symmetric function. The function T may be expressed as

T =

N∗∑
α=1

tα,

here α is the number prescribed to the pair (ij) of indexes in the sequence of all possible pairs satisfying

condition i < j; the corresponding set of indexes is denoted by s∗; tα = φ(yi,yj), N
∗ = N(N − 1)/2.

So T is a population total defined on the population of N∗ elements and may be estimated by model-

calibrated estimators, proposed in the paper of Wu and Sitter (2001).



The model-calibrated approach is extended for the quadratic functions and a model-calibrated estimator

for such a type of functions is defined as follows:
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here dij = 1/πij , πij - the second-order inclusion probabilities, B̂ = C(u, v)/C(u, u),

C(u, v) =
∑∑

(ij)∈s∗ dijqij(uij − ū)(vij − v̄), uij = φ(ŷi, ŷj), vij = φ(yi,yj),

ū =
∑∑
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∑∑

(ij)∈s∗ dijqij , and v̄, C(u, u) are defined similarly; ŷi are fitted values,

which we get using a certain semi-parametric model ξ (Sitter, Wu 2002, p. 535-543); qij are known

positive weights.

In the special case when we take φ(yi,yj) = 1
N(N−1)

(yi− yj)(zi− zj), yi = (yi, zi)
′, quadratic function

T would be the population covariance
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Suppose the the relationship between yi and xi (zi and xi) can be described by the linear regression

model Eξ(yi) = x
′
iβ (Eξ(zi) = x

′
iγ). Then using the expression (4) we get the model-calibrated

estimator of the population covariance
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ĈovHT =
1

N(N − 1)

∑
i∈s

∑
j>i

dij(yi − yj)(zi − zj),

S2
x =

1

N − 1

N∑
i=1

(xi − X̄)(xi − X̄)
′
, s2x =

1

N(N − 1)

∑
i∈s

∑
j>i

dij(xi − xj)(xi − xj)
′
.

In the next section we will compare by simulation the calibrated estimators, which use two systems

of weights, with model-calibrated estimator of the covariance. It should be noted that theoretical

comparison possess some difficulties.

4 Simulation study

The simulation study is carried out to compare the two calibrated estimators of the form (3) with model-

calibrated estimator of the finite population covariance (5). For the definition of the first estimator the

loss functions L1, and L6 are used to specify the calibrated weights w
(1)
k and w

(2)
k . For both cases the

weights w
(1)
k are required to satisfy the calibration equation (2), whereas the system of weights w

(2)
k

is defined using calibration of total. The respective calibrated estimators are denoted by Ĉov
(2)

w1(y, z),

Ĉov
(2)

w6(y, z) referring to the loss functions L1 and L6. To show the advantages of use of auxiliary

information, the simple only design based estimator of the covariance (1) was also included in to

simulation.



Table 1. The main estimated characteristics of accuracy for the estima-
tors of the finite population covariance.
True value of covariance: Cov(y, z) = 65862789

Estimator Estimate Variance Bias MSE cv

ρ(y, a) = 0.81, ρ(z, b) = 0.90, ρ(y, b) = 0.63, ρ(z, a) = 0.60

Ĉov
(2)

w1(y, z) 66187636 2.21E+13 104570 2.21E+13 0.0710

Ĉov
(2)

w6(y, z) 66064504 2.18E+13 -18562 2.18E+13 0.0706

ĈovMC(y, z) 75642103 8.90E+13 9559036 1.80E+14 0.1247

Ĉov(y, z) 61292369 9.92E+13 -4790697 1.22E+14 0.1625

ρ(y, a) = 0.21, ρ(z, b) = 0.90, ρ(y, b) = 0.63, ρ(z, a) = 0.15

Ĉov
(2)

w1(y, z) 60549920 1.00E+14 -5533146 1.31E+14 0.1655

Ĉov
(2)

w6(y, z) 60510963 1.00E+14 -5572103 1.31E+14 0.1653

ĈovMC(y, z) 83499670 2.44E+14 17416604 5.48E+14 0.1872

Ĉov(y, z) 61029215 1.04E+14 -5053851 1.30E+14 0.1674

ρ(y, a) = 0.23, ρ(z, b) = 0.31, ρ(y, b) = 0.19, ρ(z, a) = 0.16

Ĉov
(2)

w1(y, z) 60959385 1.04E+14 -5123681 1.31E+14 0.1676

Ĉov
(2)

w6(y, z) 60953712 1.04E+14 -5129355 1.31E+14 0.1675

ĈovMC(y, z) 60990137 9.53E+13 -5092930 1.21E+14 0.1601

Ĉov(y, z) 61173915 1.04E+14 -4909151 1.28E+14 0.1664

We consider the real population of size 300 from the Lithuanian Enterprise Survey. This population

is stratified into two strata by the size of the survey variable y. The stratified simple random sample

is used as a sample design. The sample size n = 100 is allocated to strata, using Neymans optimal

allocation.

1000 samples were drawn and for each of them two calibrated estimators Ĉov
(2)

w1(y, z), Ĉov
(2)

w6(y, z),

model-calibrated estimator ĈovMC(y, z) and design based estimator Ĉov(y, z) were computed. The

estimated variance, bias, mean square error (MSE) and coefficient of variation (cv) for each estimator

and for some different sets of auxiliaries, having different correlation ρ with the study variables, are

presented in Table 1. The auxiliary variables x = (a, b) and equal weights qij = 1 were used for the

model-calibrated estimator as well as the weights qk = 1 are imputed for the calibrated estimators

Ĉov
(2)

w1(y, z) and Ĉov
(2)

w6(y, z).

For the fixed correlation between auxiliary and study variables the calibrated estimators Ĉov
(2)

w1(y, z),

Ĉov
(2)

w6(y, z) produce similar results. The reason for this is that they belong to the same class of

estimators and both are constructed using very similar loss functions.

In the case of a highly correlated auxiliary variables the estimators, which use two systems of weights,

are the best, despite our preliminary expectation that accuracy of model-calibrated estimator be similar

to Ĉov
(2)

w1(y, z), Ĉov
(2)

w6(y, z) or even higher.

When only one well correlated auxiliary variable is taken (ρ(y, a) = 0.21 and ρ(z, b) = 0.90), the

model-calibrated estimator has the biggest variance and MSE. The estimators Ĉov
(2)

w1(y, z), Ĉov
(2)

w6(y, z)

perform slightly better than the design based estimator of the covariance Ĉov(y, z).

In the case of low correlated auxiliary variables all the estimators are of similar quality. The model-



calibrated estimator has a little bit smaller variance and MSE.

To conclude, it is difficult to say if pattern of the Table 1 would remain the same in the case of other

population when data would be described ideally by a linear regression model. Further simulation

study is needed.
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