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My presentation has three parts :

• Personal remarks on Survey Sampling Theory 
(in the presence of nonresponse)

• Identifying auxiliary vectors for calibration

• Propensity Score method(s)



• NR  unavoidable today
• Not only unavoidable; it is alarmingly high
• 50%  NR not unusual nowadays
• Statistics continue to be produced by “trusted 

agencies” from such “infected data sources” 
• Today, Survey Sampling Theory is, necessarily,     

“Statistical Theory for surveys with NR” 

Part 1:   Remarks on Sampling Theory                 
for surveys with nonresponse (NR)



Remarks on Survey Sampling Theory  (SST)

How does  SST respond to “the plague of NR” ?

• Classical (design-based) theory does not make room 
for NR.

• But SST ought to recognize NR from the outset :

Incorporate NR in “the ground rules”.

What do I mean by this ?



Remarks on Survey Sampling Theory

Classical  ground rules :
There is a prob. sampling design ;                              

a sample  s is drawn from pop. U ;  s ⊂ U ,                 
known inclusion probabilities   π

There exists information about  aux. vector  x
k

Researcher’s aim :  Invent
new sampling designs, new uses of aux. info.                    

to  minimize variance

Objective: Estimate pop. total(s) of    y-variable(s)



Remarks on Survey Sampling Theory
Realistic ground rules (still design-based) :

There is a prob. sampling design;                               
sample s drawn from pop. U ,    s ⊂ U ,                               
known inclusion probabilities   π

k

NR occurs :  y is observed, not for  s,                                      
only for the response set r ;      r ⊂ s.                          
unknown response probabilities 

There exists info. about aux. vector  xk

...

Researcher’s aim: Use of aux. info. to reduce bias and 
variance.



Faking design-based (“cheating”)

Often practiced; not recommended .

Manipulate the sampling weight  dk :                       
multiply it by “ad hoc factor”   ak

then pretend    dk ak

is the inclusion probability of  k



Alternative :

Abandon design-based theory;

believe instead in a theory that is more accommodating 
(and pays less attention to  NR bias).

Make assumptions, formulate models, and so on



Remarks on Survey Sampling Theory

Much research devoted to                           
“fixing the NR predicament”

Broad methodologies:

Imputation Adjustment weighting

Both important, both requiring powerful aux. info. 

Tend to be treated as “issues in their own right”,              
rather than “integrated into SST”. 



Under   design-based ground rules,

what is possible, what is not ?

Impossible : Complete removal of bias; 
quantification (estimation) of the bias 

Possible :  Compare and rank  aux. vectors                 
in regard to their potential for bias reduction;                
a partial removal of bias.



Reducing NR bias

Bias is reduced by  efficient weighting,
based on a powerful auxiliary vector.

We need tools for ranking alternative auxiliary 
vectors in regard to their potential for bias 
reduction. 



What info. is available?
What admin. registers & other sources  ?                   

Statistics Sweden has access to many potential aux. 
variables,  esp. for individuals and households.   
They form a vast supply of aux. info.

In practice, the question is one of selection :

Which aux. var. should be selected              
for the aux. vector ?

Reducing NR bias



Reducing NR bias

• In recent years, Statistics Sweden has gained 
considerable experience in calibration for NR.

• Clients demand “calibrated weighting”.

• Relies on a vast recent literature on calibration 
theory



Sample 
set (s)

Response set (r)

Target population (U)

Part 2 : Identifying suitable aux. variables



Objective :

estimate population  y-total ∑= U
yY k

y continuous or categorical

In practice, many totals and/or                
functions of totals need to be estimated.                  
We focus on one total.                    



Population U        

of units k = 1, 2, ..., N

Sample s (subset of  U)
Non-sampled :   U – s

Response set r (subset of  s)
Sampled but non-responding :    s – r

Ground rules  (design-based)



The response set r
is the set for which we observe

Available y-data :

Missing y-data : rskyk −∈for

ky

rkyk ∈for

Ground rules  (design-based)



Ground rules  (design-based)

)(sp

kπ

Known sampling design :

Known inclusion prob.  of   k : 

Known design weight of  k  : kkd π/1=



)( srq

kθ

Unknown response mechanism :

Unknown response prob.  of   k : 

Phase two:   Response selection

Ground rules  (design-based)



Ground rules (design-based)
The auxiliary information 

Set of units

Population  U

Sample    s

Response set   r

Information

known∑ ∗
U kx

rkkk ∈∗ known,and oxx

skkk ∈∗ known,and oxx
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Example :

When both types of info present :



Are these ground rules design-based ?

Yes : They preserve the concept of                              
a finite population  {1,…, k,…, N} ;

To unit  k belongs :

• A probability to observe  k :

unknownθalthoughθ)Pr()Pr( kkksrksk π=∈∈

• An auxiliary vector value
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• y-value,  known if   k responds



Objective

Not to claim that “under these conditions (models, etc.), 
our estimation is unbiased”     

Unbiased estimation is impossible;                                  
all situations are non-ignorable.

Instead, the objective is  :                                    
Rank the available  x-vectors;                        

identify one likely to give a low bias.                         
When the search ends, we still do not know 

how much bias remains.



Steps in

the calibration approach

• State the information you wish to rely on.      
• Formulate the corresponding aux. vector

• State the calibration equation

• Specify the starting weights (usually the 
sampling weights)

• Compute adjusted weights  - the calibrated 

weights - that  respect the calibration 
equation

• Use the adjusted weights to compute  
calibration estimators



Ukk ∈=′ allfor1xµ

A category of auxiliary vectors

Consider vectors with the following property  :

This  “in-line property” is present               
in most aux. vectors of interest in practice.

There exists a constant vector  µµµµ such that
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Example  1 :  Continuous  x-variable
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Example  2 :  The classification vector

kk allfor1=′xµ

′= )1,...,1,...,1(µTake

Then, as required :

identifies the category of k
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Calibration estimator
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”Bias-equivalent”  calibration estimator
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is a  derived (univariate) random variable
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• computable for   k ∈ s ;      

• used for   k ∈ r in 
computing



The adjustment factor m
k

When is it effective for bias reduction ? 
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Särndal & Lundström J.Off.Stat. 2008
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The adjustment factor

has interesting statistical properties



rateresponsesurveywhere ==
∑
∑

s k

r k

d

d
P

The mean of mk

is the same for every aux. vector :  

∑= r kkkCAL ymdY
~

Interpretation:  On average, the adjustment factor in

is equal to   (response rate)-1

Pd

md
m

r k

kr k
dr

1
; ==

∑
∑

regardless of the auxiliary vector used



The variance of mk

2
;

2 )(
1

drkr k

r k
m mmd

d
S −= ∑∑

depends on the aux. vector .

Development gives DDΣ 12
;

22 / −′==
drmm mScv

drds ;; xxD −= kkr k

r k

d
d

xxΣ ′= ∑∑
1

;

The value of   cv
m

2 increases as  x
k

expands      
(same property as  R2 in regression analysis.)

“contrast vector”



The calibration estimator is then the
Expansion estimator
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• Adding further  x-variables                                
to the  x-vector increases the value of                 

• One can show that this is                                     
likely to decrease  the bias in CALY

~

⇒ Stepwise (forward or backward) 
selection   of   x-variables                            

2
mcv
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Stepwise (forward or backward) selection
of   x-variables                            

By successive increments of  

Currently practiced at Statistics Sweden

A procedure independent of the  y-variable(s)



Example: 

The 2006 Swedish National Crime Victim 
and Security Study    (BRÅ)                  
(Data collection and calibration by 
Statistics Sweden)

2
mSUsing            to select x-variables

Särndal &  Lundström
J.Off.Stat.  2008
Estimation in Surveys with NR.  Wiley 2006



2
mS

42.710Occupation10

42.32Urban centre dweller9

41.96Days unemployed8

41.45Family size group7

40.721Region6

38.62Martial status5

35.12Gender4

31.36Age group3

27.63Income group2

20.02Country of birth1

0
-----------0

× 1000

Number 
of groups

Auxiliary variable
entering

Step



Searching the most suitable aux. vector

extensions     
currently explored at Statistics Sweden    

(results tentative)



Objective

Rank the many available  x-vectors;                        
identify one likely to give lowest possible bias.

When the search stops, we must still accept :     
unknown remaining  bias (but reduced)

Two factors influence the bias :
Relation    y-to-x
Relation    y-to-response propensity



Searching an effective aux. vector
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Consider three estimators,                                      
the first two computable, the third hypothetical

ideal: unbiased, but 
requiring full response

moderate bias

large bias
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• unbiased but not computable due to  NR

• ”bias-equivalent” with the GREG 
calibrated according to ∑∑ ∗∗ =
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The ideal 
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Three differences of interest :
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is computable

We want a near-zero value of
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• is  =  1   for the trivial  x-vector  x
k

=1

• is near  0   for a highly efficient  x-vector

regression    y on  x

where
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Stepwise (forward or backward) selection
of   x-variables

while paying attention to important  y-variables
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Currently explored at Statistics Sweden



Part 3:   Propensity score method(s) for NR

Main idea:

Response propensities are estimated,               
then grouped into subintervals of (0,1),             

then used for weighting, by the inverse of         
response rate, by sub-interval



Origins of  propensity score method :

observational studies for causal effects;             
treatments assigned to experimental units                 
but without the benefits of randomization

Rosenbaum and Rubin :

The central role of the propensity score in observational 
studies for causal effects.  Biometrika 1983

Reducing bias in observational studies using 
subclassification on the propensity score.  JASA 1984 



These authors consider :

A nonrandomized design ;
compare two treatments,  
z =  0   or   z = 1

A central concept is                              
the propensity score

)1Pr()( xx == ze

where x is a vector of observed covariates 

Formulation not in terms of finite populations



Translated into the framework for                      
finite population theory :

Treatment 0 or 1   ⇔ response/nonresponse

An assumption we may hesitate to make :                    
The auxiliary vector  x is such that                                 

R (the response indicator)            and                   
y (the study variable whose total is to be 

estimated)                                                      
are conditionally independent (or almost so) .



Propensity score method

Applications of the method :

• the single-sample situation

• the two-sample situation



Sample 
set (s)

Response set (r)

Target population (U)

Single-sample application



Propensity score method;                                     
single-sample application
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Propensity score method;                                      
two-sample application

• A reference survey, done with probability sampling,  
used to derive estimated response propensities.

This is  “a proper survey”,                                     
in the eyes of traditional survey theory

• The production survey (non-probability sampling; 
e.g., web survey),   in which the variable(s) of interest  
y are observed, then used to produce estimates.            

It is “an improper survey”;                                     
data collection uncontrolled, hap-hazard.



Reference 
sample 

(s
R
)

Production survey sample (s
P
)

Target population (U)



Propensity score method;                                      
two-sample application

• How can this work ?                                          
The key :                                              

Some auxiliary variables are observed      
in both surveys



Propensity score method;                                      
two-sample application

• Reference survey serves to derive                 
response propensities, by interval : Set

JjjkPk ,...,1;groupallfor )rateresponse(
~ 1 =∈= −

• These are used as adjustment weights in 
obtaining  y-estimates from the production 
survey



Propensity score method;                                      
two-sample application

Attractive features:   Cost advantage:                       
Although the reference survey may be expensive,              
the production survey may be much less expensive           
e.g., no expensive follow-up .

Less attractive features :

The reference survey will have some NR, so 
reliance on its results contributes further to bias.

Crucial question : Can the production survey     
(although improper)                                             
produce estimates of sufficient quality (limited bias) ? 



A look at                                                  
propensity score method (two-sample)
from the perspective of calibration theory 

Common variables, measured in both surveys, 
form a vector   xC of auxiliary variables for 
calibration

y measured only in the production survey.



Reference survey

Design weights : 
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Seek weights  wk calibrated so that

Then compute calibration estimator   
from the production survey  y-data :
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random but unbiased            
control quantity



Question arising for the calibration :                  
What should be the starting weights ?

• Constant (equal to 1),  to express ignorance  ?

• Other (more or less arbitrary) choice ?

• Is the choice really important ?



Which is the overriding consideration:

• proper (design-based) starting weights  ?    or

• the power of the aux. vector for the calibration ?       

Proposition : 

More important :              
create a powerful aux. vector;

The choice of starting weights an issue of 
secondary importance. 

Future  examination  needed.



If we accept this reasoning,                                   
do we abandon                                             
Classical Survey Sampling Theory ?

We will see …



Concluding remarks

The broader question for the NR problem is not
Do we use this or that imputation technique ?                   
This or that weighting method ?

Instead:

Do we statisticians really believe that trustworthy 
information can come from surveys with less than  
50%  response ?

Some say    NO

Some say, apparently,   YES :   We know how to 
impute;  we know how to use weighting,   and so on



When   NR   is as high as  50%                             
Is the output from the survey worthless?                          
Or does it still have some value, as information for our 
society ? 

The community of statisticians  (that includes you and 
me)  has not (yet) succeeded to develop a concerted 
stand,  

including clear criteria (in mathematical statistical or 
other terms)  for assessing  the information value              
of output from surveys with large NR.


