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Parameter of interest : the one-sample case

Population U, sample s ⊂ U according to p(s) with
πk > 0 and πkl > 0, k 6= l ∈ U

• Parameter of interest is a nonlinear function of population
totals, φ = φ(tx , ty , . . .) such as :

I Ratio R = ty/tx
I Covariance Cov =

∑
U xkyk/N −

∑
U xk

∑
U yk/N2

I functions of the empirical distribution function as the Gini
index G =

∑
U yk (2F (yk)− 1) /ty , the Theil index,...

I eigenfunctions of the functional principal components
analysis : Γvj(t) = λjvj(t), t ∈ [0, 1] (Cardot et al., 2007)
with Γ = 1

N

∑
k∈U (Yk − µ)⊗ (Yk − µ).



Complex statistic : the one-sample case

• The substitution estimator φ̂ for φ : each total is substituted by
the Horvitz-Thompson estimator :

φ̂ = φ

(∑
s

xk

πk
,
∑

s

yk

πk
, . . .

)

I all indexes are nonlinear functions of population totals ;

I we have parameters depending on quantiles ;

I we have implicit parameters.

• Variance Var(φ̂) ?

• Variance estimator V̂ar(φ̂) ?



Variance estimation : resampling methods

The most used :

1. jackknife : repeated computation leaving out one observation
(Rao et al., 1992, Berger & Skinner, 2005.)

2. bootstrap (Gross, 1980, Chauvet, 2007) : construct a
pseudo-population U∗ by individuals duplicating assumed to
mimic U and draw independent samples from U∗ according to
the initial survey design

3. balanced repeated replication. . .

The jackknife and linearization methods are similar in the sense
that the analytic derivative in linearization is replaced by a
numerical approximation (Davison & Hinkley, 1997, page 50).



Variance estimation : linearization methods

1. Estimation equations : Kovac̆ević & Binder, 1997 ;

2. Influence function : Deville, 1999 ;

3. Taylor linearization : Demnati & Rao, 2004.

Consist in finding a linearized variable uk (unknown) and
approximate

Var(φ̂) ' Var

(∑
s uk

πk

)
=
∑
U

∑
U

∆kl
uk

πk

ul

πl

V̂ar(φ̂) = V̂ar

(∑
s ûk

πk

)
=
∑

s

∑
s

∆kl

πkl

ûk

πk

ûl

πl

Wolter (1985, p. 316) : “...it may be warranted that the Taylor
series method is good, perhaps best in some circumstances, in
terms of the MSE and bias criteria but the balanced half-samples
and secondarily the jackknife methods are preferable from the
point of view of confidence interval coverage probabilities”



Influence function linearization technique : functionals of
measure M

A very general approach allowing to linearize statistics which are
not Taylor linearisable (Gini index or eigenfunctions of the
functional principal components analysis).
• Let be the population U and X ∈ Rp, xk , k ∈ U the variable of
interest ;
• Define on Rp a mesure M as follows

M =
∑
k∈U

δxk
, δxk

(x) =

{
1 if x = xk

0 elsewhere

(U,X ) is identified by the measure M.
• Let be a homogeneous functional T of degree α and write

φ = T (M).

1. Population total : tx =
∑

U xk =
∫
XdM of degree 1,

2. Ratio : R =

∑
U xk,2∑
U xk,1

=

∫
X2dM∫
X1dM

of degree 0.



Substitution estimator T (M̂)

• Estimate M by M̂ with weights wk = 1
πk

for each individual
k ∈ s and zero elsewhere,

M̂ =
∑
U

wkδxk
=
∑

s

1

πk
δxk

• The substitution estimator is

φ̂ = T (M̂)

• Examples :

1. t̂x =
∫
XdM̂ =

∑
s

xk

πk

2. R̂ =

∫
X2dM̂∫
X1dM̂

=

∑
s xk,2/πk∑
s xk,1/πk



The linearized variables : the influence function

The linearized variable corresponds to the influence function of T
at M and x = X (k) = xk , k ∈ U,

uk = IT (M, xk).

Influence function : Gâteaux derivative of T (M) in the direction
of the Dirac mass at x ,

IT (M, x) = lim
h→0

T (M + hδx)− T (M)

h

Examples : 1. For T = tx , we have uk = xk and

2. For T = R =

∑
U xk,2∑
U xk,1

, we have uk = 1
tx1

(xk,2 − R · xk,1) .



Asymptotic variance of T (M̂) : asymptotic framework

Let us suppose :

1. limN→∞ N−1
∫
XdM exists ;

2. limN→∞ N−1
(∫

XdM̂ −
∫
XdM

)
= 0 in probability ;

3. limN→∞ n1/2N−1(
∫
XdM̂ −

∫
XdM) = N(0,Σ) in

distribution.

4. T is Fréchet differentiable.

Result
Under the above assumptions, we have

√
nN−α(φ̂− φ) =

√
nN−α

∑
U

uk(wk − 1) + o(1).

The influence function approach is a theoretical justification of the
Taylor linearization approach developed by Demnati & Rao (2004).



Remarks upon the remainder

I the requirement of T to be Fréchet differentiable is strong : it
assures that the remainder is of order
o(d( M̂

N − M
N )) = op(n

−1/2).

I we can relax this assumption by asking T to be only
Hadamard differentiable : we obtain the “δ-method” (books
of van der Vaart, 1998 and Luisa Fernholz, 1982) ;

I and if we have only the Gateaux differentiability, then one
must make supplementary assumptions upon the sampling
design (upon πk and πkl) (Cardot et al, 2007 and Chaouch &
Goga, 2008).



Variance estimation

The result gives us that the asymptotic variance of φ̂ = T (M̂) is

equal to the HT variance of
∑

s

uk

πk
, namely

∑
U

∑
U

∆kl
uk

πk

ul

πl
, with ∆kl = πkl − πkπl .

Drawbacks : we have sums on U and the linearized variables are
unknown, so the variance estimator is :

V̂ar(φ̂) = V̂ar

(∑
s ûk

πk

)
=
∑

s

∑
s

∆kl

πkl

ûk

πk

ûl

πl

where ûk = IT (M̂, xk).



Extensions or applications of Deville’s approach

1. Applications :
I estimation of eigenelements of the functional principal

components analysis (FPCA) ; work in collaboration with
Hervé Cardot, Mohamed Chaouch and Catherine Labruère from
University of Burgundy, France and submitted to JSPI, 2007.

I estimation of the multidimensional quantile ; work in
collaboration with Mohamed Chaouch from University of
Burgundy, preprint 2008.

2. Extension :
I partial influence functions approach for two-sample

complex statistics ; work in collaboration with Jean-Claude
Deville from ENSAI/CREST Rennes and Anne Ruiz-Gazen
from University Toulouse 1, France, in revision for Biometrika,
2008.



First application : Functional Data with Survey data

Functional Data Deville (1974), Dauxois et al. (1982), Besse &
Ramsay (1986), Kirkpatrick & Heckman (1989), Ramsay & Silverman
(2002, 2005), ...

An observation is the realization of a random function Y (t)
(growth curve, temperature curve, ...)
taking values in a function space H = L2([0, T ]).

For instance n realizations Y1,Y2, . . . ,Yn

of a continuous time process Y = {Y (t), t ∈ [0, T ]}

with discrete time measurements

Yi =
(
Yi (t

i
1),Yi (t

i
2), . . . ,Yi (t

i
pi

)
)′



An example : egg laying curves
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Functional Data collected with survey sampling

The way data are collected is seldom taken into account

I Design of experiments in a functional setting : Cuevas et al. (2003).

I Multivariate PCA with survey data : Skinner, Holmes & Smith
(1986), Deville (1999).

A study motivated by a project of the French electricity operator (EDF)
The aim is to have a precise idea of electricity consumption (”ideal”
production, marketing, etc).
A population of more than 30 millions of electricity meters (for each firm
or household) which will be able to deliver consumption curves for each
household.

. Impossible to save and analyse online all this information.
A complex (balanced) survey approach to get a sample of electricity
meters with measurements at a fine time scale (Dessertaine, 2006).



Survey sampling framework
We consider a finite population U = {1, . . . , k, . . . ,N} with size N.

At each element k of the population U, we can associate a deterministic
function

Yk = (Yk(t))t∈[0,T ] ∈ L2[0, T ].

Let us denote by µ ∈ L2[0, 1], the ”mean” of the functions Yk

µ(t) =
1

N

∑
k∈U

Yk(t), t ∈ [0, T ]

and the ”covariance function” by

γ(s, t) =
1

N

∑
k∈U

(Yk(t)− µ(t)) (Yk(s)− µ(s))

The covariance operator Γ is defined, for all f ∈ L2[0, T ], by

Γf (s) =

∫
γ(s, t)f (t)dt , s ∈ [0, T ].



Functional PCA for finite populations

. The best linear approximation in a q dimensional functional space,
according to a variance criterion, of the functions Yk

Yk(t) = µ(t) +

q∑
j=1

〈Yk − µ, vj〉vj(t) + Rqk(t), t ∈ [0,T ].

The mean square of remainder terms Rqk

1

N

∑
k∈U

‖Rqk‖2

is minimum for

Γvj(t) = λj vj(t), t ∈ [0, T ].

The eigenfunctions vj form an orthonormal system in L2[0,T ],
the eigenvalues satisfy λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0.



Estimation of eigenelements of FPCA

Generally, N is unknown, so we have nonlinear functional
parameters :

µ(t) =
1

N

∑
k∈U

Yk(t), t ∈ [0, T ]

γ(s, t) =
1

N

∑
k∈U

(Yk(t)− µ(t)) (Yk(s)− µ(s))

and (λj , vj) are defined implicitly by

Γvj(t) = λj vj(t), t ∈ [0, T ].

We have only a sample s of “curves” selected from the whole
population U according to a sampling design p(·).
We want to give estimations of the “mean curve” and of the main
modes of variability of the data, (λj , vj)

q
j=1 based on the sample s.

We apply the influence function approach.



Nonlinear functionals of a discrete measure
Let us introduce a discrete measure M defined on L2[0, T ] by

M =
∑
k∈U

δYk

where δYk
= 1 if Y = Yk and zero else.

Our quantities of interest are (nonlinear) functionals T of this
measure

N(M) =

∫
dM, µ(M) =

∫
YdM∫
dM

Γ(M) =

∫
(Y − µ(M))⊗ (Y − µ(M)) dM∫

dM

The eigenelements of Γ are also functionals of M defined in an
implicit way.



Linearized variables for FPCA

Result
Let us suppose that sup

k∈U
‖Yk‖ < ∞. The influence functions of µ

and of Γ exist and they are given by

Iµ(M,Yk) =
1

N
(Yk − µ)

IΓ(M,Yk) =
1

N
((Yk − µ)⊗ (Yk − µ)− Γ) .

If moreover the non null eigenvalues of Γ are distinct

Iλj(M,Yk) =
1

N

(
〈Yk − µ, vj〉2 − λj

)
Ivj(M,Yk) =

1

N

∑
` 6=j

〈Yk − µ, vj〉〈Yk − µ, v`〉
λj − λ`

v`

 .

This result is similar to the multivariate case of PCA (Croux &
Ruiz-Gazen, 2005 with a robust statistics point of view).



Asymptotic variance

We estimate M by M̂. Under broad assumptions upon the
sampling design p(·), we have

µ̂− µ =
∑

s

Iµ(M,Yk)

πk
+ op(n

−1/2),

If moreover the non null eigenvalues of Γ are distinct

λ̂j − λj =
∑

s

Iλj(M,Yk)

πk
+ op(n

−1/2),

v̂j − vj =
∑

s

Ivj(M,Yk)

πk
+ op(n

−1/2).

=⇒ one can obtain the asymptotic variance of µ̂, λ̂j and v̂j .



Second Application : Multidimensional Quantile Estimation

The observations are vectors Y1, Y2, . . . , YN from Rd .

The multidimensional or geometric u-th quantile Q(u) is a
generalization of the uni-dimensional quantile :

Q (u) = arg min
θ∈Rd

N∑
k=1

φ (u,Yk − θ) for u ∈ Bd = {z ∈ Rd : ||z || < 1}. (1)

φ : Rd × Bd → R with

φ (u, t) = ||t||+ 〈u, t〉

for || · || the usual Euclidean norm and < ·, · > the usual Euclidean
inner product



Existence and uniqueness of Q(u)

The objective function

N∑
k=1

φ (u,Yk − θ) is

I continuos and convex with respect of θ

I and it explodes to infinity when ‖θ‖ → ∞, then

the uth quantile Q(u) is the unique solution of the following
equation

N∑
k=1

∂φ (u,Yk − θ)

∂θ
=

N∑
k=1

[S (Yk − θ) + u] = 0



Estimation of Q(u) with Survey Data

Let be u a direction and a sample s from U;
The sample uth quantile, Q̂(u), is the unique solution of the
equation ∑

s

S (Yk − θ) + u

πk
= 0

How to linearize this complex statistic ?
We introduce the measure M on Rd and the functional T given by

T (M, θ) =
N∑

k=1

[S (Yk − θ) + u] =

∫
[S (Y − θ) + u] dM.

The population u-th quantile Q(u) is the solution of

T (M, θ) = 0.



Asymptotic variance

I The functional T is differentiable with respect to M and θ,

I the matrix ∂T/∂θ is inversible

I then the implicit theorem assures the existence and
uniqueness of a functional T̃ such that

T̃ (M) = Q(u) the u-th quantile

Moreover, T̃ is differentiable with respect to M and T̃ (M̂) = Q̂(u)
the sample u-th quantile. Deville’s result gives

T̃ (M̂)− T̃ (M) =

∫
I T̃ (M,Y )d(M̂ −M) + op(n

−1/2)

=
∑

s

I T̃ (M,Yk)

πk
+ op(n

−1/2)

with I T̃ (M,Yk) = −(∂T/∂θ)−1 [S (Yk − θ) + u] .



Complex statistic : the two-sample case

We consider a finite population U and

1. s1, s2 ⊂ U selected according to p1(s1), p2(s2) with π1
k , π2

k ;

2. variables of interest Z1 ∈ Rp1 known on s1 and Z2 ∈ Rp2

known on s2

s1
s1∗ s3

s2
s2∗

• Repeated sampling
• Nonresponse estimation
. . .



Complex statistic : the two-sample case

Estimate a nonlinear function of totals tz1 =
∑

k∈U zk1 ,
tz2 =

∑
k∈U zk2 ,

φ = φ(tz1 , tz2)

taking into account the individuals from the common sample s3.

On s3, we know Z3 = (Z1,Z2) ∈ Rp3 with p3 = p1 + p2.

1. Gini index change : ∆G = G2 − G1.

2. Ratio estimation R = ty/tx when nonresponse occurs
differently for X and Y.

3. Covariance : Cov(X ,Y ) =
∑
U

xkyk/N −
∑
U

xk

∑
U

yk/N2 in

a change estimation problem.



Two dimension linearization method through partial
influence functions

(U,Zt) associated with a measure Mt for t = 1, 2, 3

Mt =
∑
k∈U

δzk,t

and write Φ = T (M) with M = (M1,M2,M3)

Examples : The ratio estimation R = ty/tx with nonresponse, then

(U,X ) associated with M1 and (U,Y) associated with M2,

R =
ty
tx

=

∫
YdM2∫
XdM1

Why different measures ? Because the variables of interest are
measured on different samples.



Composite estimation

Two-dimension sampling design :
the probability p(s = (s1, s2)) of selecting a two-sample
s = (s1, s2) ∈ [P(U)]2.

p(s) ≥ 0 and
∑

s

p(s) = 1.

s1
s1∗, n1∗ s3, n3

s2
s2∗, n2∗



Inclusion probabilities : for d ∈ {1∗, 3, 2∗},

πd
k = Pr(k ∈ sd) = E (I d

k ) for I d
k = 1{k∈sd}

πd ,d ′

kl = Pr(k ∈ sd&l ∈ d ′) = E (I d
k I d ′

l )

Examples

1. Two-dimension Bernoulli (BE2) sampling :

π1∗, π3, π2∗

p(s = (s1, s2)) = πn1∗
1∗ πn3

3 πn2∗
2∗ (1− π1∗ − π3 − π2∗)

N−n1−n3−n2∗

2. Two-dimension simple random sampling without replacement
(SRS2) :

p(s = (s1, s2)) =
n1∗!n3!n2∗!(N − n1 − n3 − n2∗)!

N!

π1∗
k =

n1∗
N

, π3
k =

n3

N
, π2∗

k =
n2∗
N



• Composite estimator for M1 and M2 :

M̂t =
∑
U

vk,tδzk,t

vk,1 =
a

π1∗
k

I 1∗
k +

1− a

π3
k

I 3
k and vk,2 =

b

π2∗
k

I 2∗
k +

1− b

π3
k

I 3
k

• HT estimator on the common sample s3 for M3

M̂3 =
∑
U

δzk,t

π3
k

I 3
k

Particular cases :
1. a = b = 0, M̂t =

∑
U

δzk,t

π3
k

I 3
k , t = 1, 2 are HT estimators on s3

2. a =
π1∗

k

π1
k

= cst (for BE2 or SRS2), b =
π2∗

k

π2
k

= cst then

Mt , t = 1, 2 are HT estimators on s1 and s2 (resp.)

M̂1 =
∑
U

δzk,t

π1
k

I 1
k , M̂2 =

∑
U

δzk,t

π2
k

I 2
k



Two-sample variance estimation

Substitution estimator of T (M) is T (M̂), M̂ = (M̂1, M̂2, M̂3).

First partial influence function : IT1(M; z) of T (M) is

IT1(M; z) = lim
h→0

T (M1 + hδz ,M2,M3)− T (M1,M2,M3)

h

when this limits exists.

IT2(M; z) and IT3(M; z) defined similarly.

Linearized variables : uk,t = ITt(M; zk,t) for zk,t ∈ Rpt .

Example : For R =

∫
YdM2/

∫
XdM1 we have

uk,1 = −xkty/t2
x , uk,2 = yk/tx and uk,3 = 0.



Asymptotic framework

For t ∈ {1, 2, 3}, we suppose that

1. lim
N→∞

n−1
2 n1 = λ for λ > 0 and lim

N→∞
N−1nt = πt ∈ (0, 1);

2. lim
N→∞

N−1

∫
ZtdMt exists ;

3. lim
N→∞

N−1

(∫
ZtdM̂t −

∫
ZtdMt

)
= 0 in probability ;

4. lim
N→∞

(
nt

1/2N−1(

∫
ZtdM̂t −

∫
ZtdMt)

)3

t=1

= N(0,Σ) in

distribution.

5. T is homogeneous, namely it exists a real number β > 0
dependent on T such that T (rM) = rβT (M) for any real
r > 0;

6. limN→∞ N−βT (M) < ∞.

7. T is Fréchet differentiable.



Main results : result 1

Variance approximation T (M̂) is approximated by

√
n

Nβ
(T (M̂)− T (M)) =

√
n

Nβ

3∑
t=1

∫
ItT (M; z)d(M̂t −Mt)(z) + op(1)

=

√
n

Nβ

3∑
t=1

(∑
k∈U

uk,t(vk,t − 1)

)
+ op(1).

Then :

var

(√
n

Nβ
(T (M̂)− T (M))

)
' var

(√
n

Nβ

3∑
t=1

(∑
k∈U

uk,t(vk,t − 1)

))



Main results : result 2
We consider the unbiased composite estimator M̂t of Mt for
t = 1, 2 and the HT estimator for M3.
Let us denote by t̂d

ut
=
∑

k∈sd

uk,t

πd
k

for t ∈ T and d = 1∗, 2∗, 3.

Under the assumptions 1-7,

1. the substitution estimator T (M̂) is approximated by the
composite estimator

a
(
t̂1∗
u1
− t̂3

u1

)
+ b

(
t̂2∗
u2
− t̂3

u2

)
+

3∑
t=1

t̂3
ut

.

2. var

(√
n

Nβ
(T (M̂)− T (M)

)
'

n

N2β

(
θ′Γθ + 2θ′γ + var

3∑
t=1

t̂3
ut

)
where θ = (a, b)′ and Γ

(resp. γ) is a matrix (resp. a vector) of variance terms. This
variance is minimum for θopt = −Γ−1γ.



Two-dimension simple random sampling without
replacement (SRS2) and Φ = T (M1, M2)

• Parameter φ = T (M1,M2), uk,1 and uk,2 the linearized variables ;
• Population U of size N = 1000;
• SRS2 sample (s1, s2) ⊂ U × U such that
n = n1∗ + n3 + n2∗ = 300 and n1∗ = 100;
• Comparison between

T (M̂opt
1 , M̂opt

2 ) ' aopt

(
t̂1∗
u1
− t̂3

u1

)
+ bopt

(
t̂2∗
u2
− t̂3

u2

)
+

2∑
t=1

t̂3
ut

T (M̂uni
1 , M̂uni

2 ) ' t̂1
u1

+ t̂2
u2

a =
n1∗
n1

, b =
n2∗
n2

T (M̂ int
1 , M̂ int

2 ) ' t̂3
u1

+ t̂3
u2

a = b = 0

for different values of ρu1,u2 and of n3/n;
• We suppose S2

u2
/S2

u1
= 1.



Plan SRS2 : the optimal estimator or the estimator on s1

and s2 ?
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Plan SRS2 : the optimal estimator or the estimator on s3 ?
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