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Parameter of interest : the one-sample case

Population U, sample s C U according to p(s) with
7Tk>Oand7rk/>O,k7£/€U

e Parameter of interest is a nonlinear function of population
totals, ¢ = ¢(t, t,,...) such as:

> Ratio R =1t,/ty

» Covariance Cov = Y xkyk/N — Sy xk Doy v/ N?

» functions of the empirical distribution function as the Gini
index G =), vk (2F(yx) — 1) /t,, the Theil index,...

» eigenfunctions of the functional principal components
analysis : T'vj(t) = A\jvj(t), t € [0,1] (Cardot et al., 2007)
with T = 5 Yucy (Y — 1) ® (Vi — p).



Complex statistic : the one-sample case

e The substitution estimator <$ for ¢ : each total is substituted by
the Horvitz-Thompson estimator :

2 Xk Yk

» all indexes are nonlinear functions of population totals;
» we have parameters depending on quantiles;
» we have implicit parameters.

e Variance Var($) ?

e Variance estimator Var(¢)?



Variance estimation : resampling methods

The most used :

1. jackknife : repeated computation leaving out one observation
(Rao et al., 1992, Berger & Skinner, 2005.)

2. bootstrap (Gross, 1980, Chauvet, 2007) : construct a
pseudo-population U* by individuals duplicating assumed to
mimic U and draw independent samples from U* according to
the initial survey design

3. balanced repeated replication. ..

The jackknife and linearization methods are similar in the sense
that the analytic derivative in linearization is replaced by a
numerical approximation (Davison & Hinkley, 1997, page 50).



Variance estimation : linearization methods

1. Estimation equations : Kovacevi¢ & Binder, 1997 ;
2. Influence function : Deville, 1999;

3. Taylor linearization : Demnati & Rao, 2004.

Consist in finding a linearized variable uy (unknown) and
approximate

Var($) ~ Var < > Z Z Ay :i ;i

Var(¢) = Var (M) :Z B i Ty
Tk s o Tkl Tk T

Wolter (1985, p. 316) : “...it may be warranted that the Taylor
series method is good, perhaps best in some circumstances, in
terms of the MSE and bias criteria but the balanced half-samples
and secondarily the jackknife methods are preferable from the
point of view of confidence interval coverage probabilities”



Influence function linearization technique : functionals of
measure M

A very general approach allowing to linearize statistics which are
not Taylor linearisable (Gini index or eigenfunctions of the
functional principal components analysis).

e Let be the population U and X € RP, xi, k € U the variable of
interest ;

e Define on RP a mesure M as follows

M:ZCSXJU 5Xk(X):{ ! f X

0 elsewhere
kelU

(U, X) is identified by the measure M.
e Let be a homogeneous functional T of degree v and write
¢ = T(M).
1. Population total : t, = Y, xk = [ XdM of degree 1,
XodM
2. Ratio: R= 2y Xk2 = J Xod
ZU Xk71 ledM

of degree 0.



A

Substitution estimator T (M)

e Estimate M by M with weights wy = %k for each individual
k € s and zero elsewhere,

. 1
M=> wdy = ;kéxk
U

S

e The substitution estimator is
¢ = T(fn)

e Examples :
~ 1 Xk
1. tx_fXdM_Zs:m

o B szdM _ Y os Xk 2/ Tk
[XdM D xk1/




The linearized variables : the influence function

The linearized variable corresponds to the influence function of T
at M and x = X (k) = xx, k € U,

ug = IT(M, x).

Influence function : Giteaux derivative of T(M) in the direction
of the Dirac mass at x,

M) — tim T4 h82) = T(M)
h—0 h

Examples : 1. For T = t,, we have uy = x, and

2.For T=R= 2y k2
DU X1

, we have uk:%(xkg—R-xkl).
L, Kk, :



Asymptotic variance of T(M) : asymptotic framework
Let us suppose :
1. imy_oo N_ledl\/I exists ;
2. limy_o N1 (f XdM — fXdM) = 0 in probability;

3. limy oo /2N~ [ XdM — [ XdM) = N(0,X) in
distribution.
4. T is Fréchet differentiable.

Result
Under the above assumptions, we have

VANT (¢ — ¢) = VAN~ > " u(wie — 1) + o(1).
U

The influence function approach is a theoretical justification of the
Taylor linearization approach developed by Demnati & Rao (2004).



Remarks upon the remainder

» the requirement of T to be Fréchet differentiable is strong : it
assures that the remainder is of order

o(d(% — M) = o(n~1/2).

» we can relax this assumption by asking T to be only
Hadamard differentiable : we obtain the “6-method” (books
of van der Vaart, 1998 and Luisa Fernholz, 1982);

» and if we have only the Gateaux differentiability, then one
must make supplementary assumptions upon the sampling
design (upon 7, and mg) (Cardot et al, 2007 and Chaouch &
Goga, 2008).



Variance estimation

The result gives us that the asymptotic variance of ¢ = T(M) is
, u
equal to the HT variance of Z —k, namely
Tk

ZZAM —, with Ak/:wk/—ﬂkm.
T T

Drawbacks : we have sums on U and the linearized variables are
unknown, so the variance estimator is :

Var(¢) = Var <Zsak> :Z B i Ty
Tk — 7 T Tk T

where @i = IT(M, x).



Extensions or applications of Deville's approach

1. Applications :

» estimation of eigenelements of the functional principal
components analysis (FPCA); work in collaboration with
Hervé Cardot, Mohamed Chaouch and Catherine Labruére from
University of Burgundy, France and submitted to JSPI, 2007.

» estimation of the multidimensional quantile; work in
collaboration with Mohamed Chaouch from University of
Burgundy, preprint 2008.

2. Extension :

» partial influence functions approach for two-sample
complex statistics; work in collaboration with Jean-Claude
Deville from ENSAI/CREST Rennes and Anne Ruiz-Gazen
from University Toulouse 1, France, in revision for Biometrika,
2008.



First application : Functional Data with Survey data

Functional Data Deville (1974), Dauxois et al. (1982), Besse &
Ramsay (1986), Kirkpatrick & Heckman (1989), Ramsay & Silverman
(2002, 2005), ...

An observation is the realization of a random function Y'(t)
(growth curve, temperature curve, ...)
taking values in a function space H = L?([0, 7).

For instance n realizations Y1, Y5,..., Y,
of a continuous time process Y = {Y(t), t € [0,7]}

with discrete time measurements

Y = (Yi(t]), Yi(8h), ..., Yi(t)))



An

example : egg laying curves
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Functional Data collected with survey sampling

The way data are collected is seldom taken into account

> Design of experiments in a functional setting : Cuevas et al. (2003).

» Multivariate PCA with survey data : Skinner, Holmes & Smith
(1986), Deville (1999).

A study motivated by a project of the French electricity operator (EDF)
The aim is to have a precise idea of electricity consumption ("ideal”
production, marketing, etc).

A population of more than 30 millions of electricity meters (for each firm
or household) which will be able to deliver consumption curves for each
household.

> Impossible to save and analyse online all this information.
A complex (balanced) survey approach to get a sample of electricity
meters with measurements at a fine time scale (Dessertaine, 2006).



Survey sampling framework
We consider a finite population U = {1,...,k,..., N} with size N.

At each element k of the population U, we can associate a deterministic
function
Y = (Yk(t))te[O,T] S L2[O,T]

Let us denote by u € L2[0,1], the "mean” of the functions Yj

u(t) = % > Yi(t), te[0,7]
keu
and the "covariance function” by
(s, 1) = % D (Ya(®) = () (Yals) = uls))

keU

The covariance operator I is defined, for all f € L2[0,7], by

Mf(s) = /7(5, t)f(t)dt, sel0,7].



Functional PCA for finite populations

> The best linear approximation in a g dimensional functional space,
according to a variance criterion, of the functions Y}

q

V(t) = n(0)+ D (Y- 1 )y(t) + Rult), t € [0, ]

The mean square of remainder terms Ry
1 2
5 IR
keu
is minimum for
Fvi(t) = X v(t), telo,T].

The eigenfunctions v; form an orthonormal system in L]0, T],
the eigenvalues satisfy A\; > Ao > ... > Ay > 0.



Estimation of eigenelements of FPCA

Generally, N is unknown, so we have nonlinear functional
parameters :

u(t) = &S Vie), teo.]
keU

V(s t) = %Z(Yk(t)—ﬂ(t))(yk(s)—M(S))

keU
and ()}, vj) are defined implicitly by
Mvi(t) = X v(t), tel0,T].

We have only a sample s of “curves” selected from the whole
population U according to a sampling design p(-).

We want to give estimations of the “mean curve” and of the main
modes of variability of the data, (};, VJ')qul based on the sample s.

We apply the influence function approach.



Nonlinear functionals of a discrete measure
Let us introduce a discrete measure M defined on L2[0,7] by
M-y
keU
where oy, = 1if Y = Y and zero else.

Our quantities of interest are (nonlinear) functionals T of this
measure

wm)y = [ aw, M(M)//);jz/’

/ (Y — u(M)) @ (V) — u(M)) dM

/dM

The eigenelements of I are also functionals of M defined in an
implicit way.




Linearized variables for FPCA

Result

Let us suppose that  sup || Yk|| < co. The influence functions of 1
keU
and of T exist and they are given by

M, Yi) = (Vi)
ITM.Y) = (Y~ ) ® (Y )~ ).

If moreover the non null eigenvalues of I are distinct

1
INM, Vi) = 5 (Yee— i) = )
1 <Yk_:uvvj><yk_:u’avf>
lvi(M,Y,) = — v
i(M. Yid) e VDY ‘

]

This result is similar to the multivariate case of PCA (Croux &
Riiieo (Cavarn ONNE «vviivh A vAliict ctatictimre mAaimt ~F viaws)



Asymptotic variance

We estimate M by M. Under broad assumptions upon the
sampling design p(-), we have

X (M, Y, -

S ﬂ-k

If moreover the non null eigenvalues of I are distinct

. IN(M, Y _
A=A = Zj(ﬂk) + 0p(n”1/?),
S

Iv;(M.,Y, _
QJ'_VJ':ZVJ(Wkk)+OP(” 1/2)-
S

= one can obtain the asymptotic variance of [, 5\1- and ;.



Second Application : Multidimensional Quantile Estimation

The observations are vectors Yi, Ya,..., Yy from RY.

The multidimensional or geometric u-th quantile Q(u) is a
generalization of the uni-dimensional quantile :

N
Q(v) :argergknd;qﬁ(u, Yi—0) for ueB?={zcR?: |z <1}.
¢ : R x BY — R with
¢ (u, t) = [[t][ + (v, 1)

for || - || the usual Euclidean norm and < -,- > the usual Euclidean
inner product



Existence and uniqueness of Q(u)

The objective function
N
> p(u,Yie—0) s
k=1

» continuos and convex with respect of 6

» and it explodes to infinity when ||f|| — oo, then
the uth quantile Q(u) is the unique solution of the following
equation

N

N
Za¢(”’8;k_9) =3 IS(Yk—0) +u] =0

k=1 k=1



Estimation of Q(u) with Survey Data

Let be u a direction and a sample s from U,
The sample uth quantile, @(u), is the unique solution of the
equation

S 7Tk

How to linearize this complex statistic ?
We introduce the measure M on R? and the functional T given by

2

T(I\/I,G)—Z[S(Yk—ﬁ)—i—u]—/[5(Y—6)+u]dM.
k=1

The population u-th quantile Q(u) is the solution of

T(M,0) = 0.



Asymptotic variance

» The functional T is differentiable with respect to M and 6,
> the matrix 0T /06 is inversible

» then the implicit theorem assures the existence and
uniqueness of a functional T such that

T(M) = Q(u) the u-th quantile

Moreover, T is differentiable with respect to M and T(M) = Q(u)
the sample u-th quantile. Deville's result gives

T(M)y—T(M) = //7'(M, Y)d(M — M) 4 o,(n"1/?)

S ﬂ-k

with I T(M, Yy) = —(8T/90) L[S (Vi — 0) + u].



Complex statistic : the two-sample case

We consider a finite population U and
1. s1,5 C U selected according to pi(s1), p2(s2) with 7}, 72 ;

2. variables of interest Z; € RP* known on s; and Z, € RP?
known on sp

51 : T 1
S1x 53

S 1 52

e Repeated sampling
e Nonresponse estimation




Complex statistic : the two-sample case

Estimate a nonlinear function of totals t;, = Y, ., 2,
tz, = Zkeuzkzv

(b = ¢(t217 tZQ)

taking into account the individuals from the common sample s3.
On s3, we know Z3 = (21, Z) € RP* with p3 = p1 + p2.
1. Gini index change : AG = G, — G;.

2. Ratio estimation R = 1.“y/1.“X when nonresponse occurs
differently for X and ).

3. Covariance : Cov(X,Y) Zxkyk/N Zkayk/N in

a change estimation problem



Two dimension linearization method through partial
influence functions

(U, Z;) associated with a measure M; for t =1,2,3

Me=> "6,

keU

and write ® = T(M) with M = (My, My, M3)

Examples : The ratio estimation R = t, /t, with nonresponse, then

(U, X) associated with My and (U, )) associated with My,

te [ XdM

Why different measures ? Because the variables of interest are
measured on different samples.



Composite estimation

Two-dimension sampling design :
the probability p(s = (s1,s2)) of selecting a two-sample
s = (s1,%) € [P(U))%

p(s) >0 and Zp(s) =1

S1x, N« 53, N3

5 . S52x5 M4




Inclusion probabilities : for d € {1x,3,2x},

mf = Pr(k € s) = E({) for [{ =1gcqy

76? = Pr(k € sq&l € d') = E(IZ1)
Examples
1. Two-dimension Bernoulli (BE2) sampling :

Nix, N3 __N2x N—n1—n3—no.

p(s = (s1,%2)) = mp w3’ mol (1 — miw — w3 — 72
2. Two-dimension simple random sampling without replacement
(SRS2) :

nl*!n3!n2*!(N — N — n3 — n2*)!
N!

p(s = (s1,%2)) =

1x _ M 3 _ —
e = ™ TN Tk T




e Composite estimator for My and M, :

M; = E Vk,t5zk7t

U
a —a,;3 b -, 1—bg
Tk Tk Tk Tk

e HT estimator on the common sample s3 for M3

R 5,
My =>" nktlk

U k

Particular cases :

N 62 .
lLa=b=0 M=>, 7:3"/3, t =1,2 are HT estimators on s3
k

2.a= il = cst (for BE2 or SRS2), b = Li; = cst then
Tk

Tk
M, t = 1,2 are HT estimators on s; and s, (resp.)

N ) N )
=Y =Y
U

U k k




Two-sample variance estimation

Substitution estimator of T(M) is T(M), M = (My, M, 43).
First partial influence function : IT1(M;z) of T(M) is

m T(Ml + h527 M27 M3) - T(M17 M2a M3)

(M) = f ;

when this limits exists.

ITo(M; z) and IT3(M; z) defined similarly.

Linearized variables : uy + = IT{(M; 2, +) for z + € RP:.
Example : For R = /ydMg//Xdl\/ll we have

Ukl = —thy/t)%, Ugo = yk/tx and U3 = 0.



Asymptotic framework
For t € {1,2 3} we suppose that
1. lim ny 1ni=Xfor A >0 and Iim N~ tn =m € (0,1);

N—oo

N—oo

2. lim Nl/thMt exists ;

3. lim N7t (/thl\A/It — /thMt> =0 in probability ;

N—oo
. 3
4. lim (nt1/2N1(/ Z.dM, — /thMt)> = N(0,%) in
—00 -1
distribution. '

5. T is homogeneous, namely it exists a real number 3 > 0
dependent on T such that T(rM) = r®T(M) for any real
r>0;

6. limy_oo NP T(M) < .

7. T is Fréchet differentiable.



Main results : result 1

Variance approximation T(M) is approximated by
3
n ~
WECTU) =T = 5SS [T )~ M) + (1)
t=

3
= xg Z <Z Uk, e(Vi,t — 1)) + 0p(1).

t=1 \keU

3
var (;\ﬁ(T(I\A/I) — T(M)) ) (V; Z (Z ke (Viee — 1)))

keU



Main results : result 2

We consider the unbiased composite estimator I\Aﬂt of M; for
t = 1,2 and the HT estimator for Mj.
Let us denote by 27 = > kes, %’f for t € 7 and d = 1%, 2x%,3.

Under the assumptions 1-7,

1. the substitution estimator T(M) is approximated by the
composite estimator

3
a(?lfl*—A )+b 3 Z

2. ver (35 (T() ~ T(u )):

N2ﬁ (G’FH + 20"y +varz t3> where § = (a,b)' and T
t=1

(resp. 7y) is a matrix (resp. a vector) of variance terms. This
variance is minimum for 0yp; = —Filfy.



Two-dimension simple random sampling without
replacement (SRS2) and ¢ = T(My, M)

e Parameter ¢ = T(My, M2), ui1 and uy 5 the linearized variables;
e Population U of size N = 1000;

e SRS2 sample (s1,52) C U x U such that

n = nx + n3 + no, = 300 and ny, = 100;

e Comparison between

T(MPE, MSPY) = agpe (B — E2) + bope (2 ) + Z 23
o 31 ~2 U L
T(Mum unl) ~ tu1 + tu2 a= n y b= o

(MM ) ~ B+ a=b=0

for different values of py, 4, and of n3/n;
e We suppose S2 /52 =1.



Plan SRS2 : the optimal estimator or the estimator on s;
and s, ?
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Plan SRS2 : the optimal estimator or the estimator on s37
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