Survey sampling and nonparametric models for taking into account the auxiliary information : a B-splines approach

Camelia GOGA

IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr

Workshop on Survey Sampling Theory and Methodology Kuressaare - August 25-29 2008

- a finite population $U = \{1, \ldots, k, \ldots, N\}$
- ▶ a sample $s \in S$ and $s \subset U$
- the sampling design p(s): a probability distribution on the set S;

p(s) is controlled by the statistician.

- the inclusion probabilities
 - of first degree : $\pi_k = Pr(k \in s)$
 - of second degree : $\pi_{kl} = Pr(k, l \in s)$ for $k \neq l$ and $\pi_{kk} = \pi_k$

Example 1 : Simple random sampling without replacement of size *n* :

• the sampling design $p(s) = 1/C_N^n$,

•
$$\pi_k = \frac{n}{N}$$
 and $\pi_{kl} = \frac{n(n-1)}{N(N-1)}$ for $k \neq l$.

Example 2 : Simple random sampling with replacement and proportional to the size :

▶ the sampling design p(s) = p_{k1}p_{k2}...p_{km} and p_{ki} the probability of selecting the individual k_i at the *i*th selection;

$$\blacktriangleright p_k = x_k / \sum_U x_k$$

Estimator of Finite Population Total : the Horvitz-Thompson Estimator

Let us consider :

• the variable of interest \mathcal{Y} ,

 y_k = the value of \mathcal{Y} for the *k*-th individual,

- we know y_k for $k \in s$
- \blacktriangleright we want to estimate the population total of $\mathcal Y$, namely

$$t_y = \sum_U y_k$$

• $\hat{t} = \sum_U w_k(s) y_k$ with $w_k(s) = 0$ if $k \in U - s$,

► The Horvitz-Thompson (HT) estimator :

$$\hat{t}_{\pi} = \sum_{k \in s} \frac{y_k}{\pi_k} = \sum_{k \in U} \frac{y_k}{\pi_k} I_k$$

 $I_k = \mathbf{1}_{\{k \in s\}}$ the sample membership

Properties

The estimator HT for a total is

- the only homogeneous and linear in y_k estimator being unbiased and with weights not depending on the variable of interest Y and on the sample s;
- the HT variance is

$$\mathcal{V}(\hat{t}_{\pi}) = \sum_{k \in U} \sum_{l \in U} (\pi_{kl} - \pi_k \pi_l) rac{y_k}{\pi_k} rac{y_l}{\pi_l}$$

the HT variance estimator is

$$\hat{V}(\hat{t}_{\pi}) = \sum_{k \in s} \sum_{l \in s} \frac{\pi_{kl} - \pi_k \pi_l}{\pi_{kl}} \frac{y_k}{\pi_k} \frac{y_l}{\pi_l}$$

Drawbacks :

- 1. The HT estimator contains little auxiliary information (the π_k)!
- 2. The variance as well as the variance estimator contain double sums.

An auxiliary information \mathcal{Z} , (uni ou multidimensional) z_k the value for the k-th individual from U. We know

- the total $\sum_U z_k$ or
- z_k for all $k \in U$

イロト イポト イヨト イヨト

Approaches for improving the HT estimator

- Calibration : we improve the HT estimator without considering any super-population model (Deville & Särndal 1992)
- The super-population model ξ : y_k are independent and identically distributed random variables with

$$\xi: \left\{ \begin{array}{rl} E_{\xi}(y_k) &=& f(z_k) \\ V_{\xi}(y_k) &=& v(z_k) \end{array} \right.$$

- "model assisted" : we construct the estimator based on the sampling design and assisted by the super-population model (Särndal, Swensson & Wretman 1992)
- "model bassed" : we predict the population total by using the super-population model without taking into account the sampling design (Royall & Cumberland 1978)

イロト イポト イヨト イヨト 二日

The super-population model with "model-assisted" estimator :

$$\underbrace{Y_1, Y_2, \ldots \Longrightarrow Y_1, Y_2}_{Y_i \text{ random variables } (\xi)}, \underbrace{\ldots, Y_N \Longrightarrow y_k, k \in s}_{I_k \text{ random } (p)}$$

Goal : We search for an estimator \hat{t} for the total t_Y which takes into account \mathcal{Z} such that

$$E_{\xi}E_p(\hat{t}-t_y)=0$$

and minimizing the "anticipated variance"

$$Var_{\xi,p}(\hat{t}-t_y) = E_{\xi}E_p(\hat{t}-t_y)^2 - \left[E_{\xi}E_p(\hat{t}-t_y)
ight]^2.$$

Remark : $E_{(\xi,p)} = E_{\xi}E_{p} = E_{p}E_{\xi}$ because the sampling design p does not depend on the variables \mathcal{Y} and \mathcal{Z} (non-informatif sampling design);

(日本) (日本) (日本)

We consider the HT estimator for the total

$$\hat{t}_{\pi} = \sum_{k \in s} \frac{y_k}{\pi_k}$$

which is *p*-unbiased but ξ -biased :

$$E_p(\hat{t}_\pi) = t_y$$
 et $E_{\xi}(\hat{t}_\pi - t_y) = \sum_s \frac{f(z_k)}{\pi_k} - \sum_U f(x_k).$

We modify \hat{t}_{π} in order to obtain a ξ -unbiased estimator : the generalized difference estimator (Cassel, Särndal & Wretman 1976)

$$\hat{t}_{diff} = \sum_{k \in s} \frac{y_k - f(z_k)}{\pi_k} + \sum_{k \in U} f(z_k)$$
$$= \sum_{\substack{k \in s \\ \hat{t}_{HT}}} \frac{y_k}{-\frac{\left(\sum_s \frac{f(z_k)}{\pi_k} - \sum_{k \in U} f(z_k)\right)}{E_{\xi}(\hat{t}_{HT} - t_y)}}$$

Camelia Goga Survey sampling and nonparametric models for taking into accurate

• \hat{t}_{diff} is p and ξ -unbiased;

The variance under the sampling design is

$$V_p(\hat{t}_{diff}) = \sum_{k \in U} \sum_{i \in U} \Delta_{ki} \frac{y_k - f(z_k)}{\pi_k} \frac{y_i - f(z_i)}{\pi_i};$$

The variance under the model and the sampling design is

$$E_{\xi}E_{p}(\hat{t}_{diff}-t_{y})^{2}=\sum_{U}\frac{1-\pi_{k}}{\pi_{k}}v(z_{k})$$

the Godambe-Joshi lower bound (1965).

Drawback : in practice, we do not know $f(z_k)$.

・ロット (日本) (日本) (日本)

Estimation of the regression function

We estimate the $f(z_k)$ in two steps :

•First step - at the population level :

we estimate $f(z_k)$ by $\hat{f}(z_k)$ using parametric or nonparametric methods;

The estimators $\hat{f}(z_k)$ depend on the whole population U, so they are unknown.

At this level, the sampling design does not appear.

•Second step at the sample level : we estimate $\hat{f}(z_k)$ by $\hat{\tilde{f}}(z_k)$ using the sampling design p. The difference estimator becomes

$$\sum_{k\in s}\frac{y_k-\hat{\hat{f}}(z_k)}{\pi_k}+\sum_{k\in U}\hat{\hat{f}}(z_k).$$

- 4 周 ト 4 日 ト 4 日 ト - 日

The GREG Estimator

• If $f(z_k) = \mathbf{z}'_k \beta \rightarrow$ the generalized regression estimator (GREG) (Särndal, Swensson & Wretman 1992)

Population level :
$$\hat{\boldsymbol{\beta}} = \left(\sum_{U} \frac{\mathbf{z}_k \mathbf{z}'_k}{v_k}\right)^{-1} \sum_{U} \frac{\mathbf{z}_k y_k}{v_k}$$

Sample level :
$$\hat{\boldsymbol{\beta}}_{s} = \left(\sum_{s} \frac{\mathbf{z}_{k} \mathbf{z}'_{k}}{\pi_{k} \mathbf{v}_{k}}\right)^{-1} \sum_{s} \frac{\mathbf{z}_{k} y_{k}}{\pi_{k} \mathbf{v}_{k}}$$

Then, $\hat{t}_{GREG} = \hat{t}_{y\pi} - (t_z - t_{z\pi})' \hat{\boldsymbol{\beta}}_s$.

We need only $\sum_{k \in U} \mathbf{z}_k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の久(?)

Nonparametric estimation by regression B-spline

- Suppose we know z_k for all k ∈ U. How can we use this supplementary information?
- We can only suppose that f is a smooth function (differentiable) without a specific parametric expression.
- Breidt & Opsomer (2000, 2005) propose a class of estimators based on local polynomial regression and respectively, on penalised splines.
- I propose a B-spline approach. (The Canadian Journal of Statistics, 2005)

イロト イポト イヨト イヨト 二日

B-spline regression estimator

► The set of spline functions of degree m (m ≥ 2) with K interiors equidistant knots

$$0 = \xi_0 < \xi_1 < \ldots < \xi_K < \xi_{K+1} = 1$$

$$S_{K,m} = \{ s \in C^{m-2}[0,1] : s(x) \text{ is a polynomial of degree} \\ m-1 \text{ sur } (\xi_j,\xi_{j+1}) \}.$$

► { $B_1(\cdot), \ldots, B_q(\cdot)$ } form a basis for $S_{K,m}$ of dimension q = K + m (Schumaker 1981, Dieckx 1993) $B_1(\cdot), \ldots, B_q(\cdot)$ B-splines;

1.
$$0 \le B_j(\cdot) \le 1$$
, $\sum_{j=1}^q B_j(\cdot) = 1$.
2. $\mathbf{B}_U = (B_j(z_k))_{k \in U, j=1, ..., q} = (\mathbf{b}'(z_k))_{k \in U}$

(a)

х

(b)

х

Camelia Goga

Survey sampling and nonparametric models for taking into account

• under the model ξ ,

$$\hat{f}(t) = \sum_{j=1}^{q} \hat{ heta}_{j} B_{j}(t)$$
 with
 $\hat{m{ heta}} = (\hat{ heta}_{1}, \dots, \hat{ heta}_{q})$ is obtained by least squares

$$\hat{\boldsymbol{\theta}} = \operatorname{Arg} \min_{\boldsymbol{\theta} \in \mathbb{R}^q} \sum_{k=1}^N \left(y_k - \sum_{j=1}^q \theta_j B_j(z_k) \right)^2.$$

$$\begin{cases} \hat{f}_k = \mathbf{b'}(z_k)\hat{\boldsymbol{\theta}} \quad k \in U \\ \hat{\boldsymbol{\theta}} = (\mathbf{B'}_U \mathbf{B}_U)^{-1} \mathbf{B'}_U \mathbf{y}_U \\ = \left(\sum_{i \in U} \mathbf{b}(z_i) \mathbf{b'}(z_i)\right)^{-1} \sum_{i \in U} \mathbf{b}(z_i) y_i \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

► under the sampling design, p(·) : f(z_k) is estimated by substitution of each total with the HT estimator :

$$\hat{\hat{f}}(z_k) = \mathbf{b}'(z_k)\hat{\hat{\theta}}
= \mathbf{b}'(z_k)(\mathbf{B}'_s\mathbf{\Pi}_s^{-1}\mathbf{B}_s)^{-1}\mathbf{B}'_s\mathbf{\Pi}_s^{-1}\mathbf{y}_s \quad k \in U
= \mathbf{b}'(z_k)\left(\sum_{i \in s} \frac{\mathbf{b}(z_i)\mathbf{b}'(z_i)}{\pi_i}\right)^{-1}\left(\sum_{i \in s} \frac{\mathbf{b}(z_i)y_i}{\pi_i}\right)$$

for $\Pi_s = \text{diag}(\pi_k)_{k \in s}$ and $\mathbf{B'}_s = (\mathbf{b'}(z_k))_{k \in s}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The B-spline estimator for the total

We replace the $\hat{\hat{f}}(z_k)$ in \hat{t}_{diff} for obtaining the estimator for t_y :

$$\hat{t}_{BS} = \sum_{k\in s} rac{y_k - \hat{\hat{f}}(z_k)}{\pi_k} + \sum_{k\in U} \hat{\hat{f}}(z_k).$$

• Population fit residuals $E_k = y_k - \hat{f}(x_k)$ for all $k \in U$ satisfy

$$\sum_{U} E_k = 0.$$

▶ Sample fit residuals $e_k = y_k - \hat{\hat{f}}(x_k)$ for all $k \in U$ satisfy

$$\sum_{s}\frac{e_k}{\pi_k}=0.$$

- イボト イラト - ラ

Properties of \hat{t}_{BS}

• \hat{t}_{BS} is the population total of $\hat{f}(x_k)$,

$$\hat{t}_{BS} = \sum_{k \in U} \hat{\hat{f}}(z_k) = \sum_{k \in s} w_{ks} y_k$$

with

$$w_{ks} = \frac{1}{\pi_k} \left(\sum_U \mathbf{b'}(z_k) \right) \left(\sum_{i \in s} \frac{\mathbf{b}(z_i)\mathbf{b'}(z_i)}{\pi_i} \right)^{-1} \mathbf{b}(z_k).$$

► the weights w_{ks} contain the auxiliary information and they not depend on the variable of interest; as a consequence, they may used for estimating the population total of another variable of interest.

(本間) (本語) (本語)

► Calibration (Deville & Särndal 1992) : Suppose that ∑_{k∈U} B_j(z_k) are known. The weights w_{ks} satisfy the calibrating equation on the B-splines :

$$\sum_{s} w_{ks} B_j(z_l) = \sum_{U} B_j(z_k) \quad j = 1, \dots, q$$

- $\hat{t}_{BS} = \sum_{s} \frac{y_k}{\pi_k} \left(\sum_{s} \frac{\mathbf{b}'(x_k)}{\pi_k} \sum_{U} \mathbf{b}'(x_k)\right) \hat{\hat{\boldsymbol{\theta}}}$ is a kind of GREG-estimator for the auxiliary information vector $\mathbf{z}_k = \mathbf{b}'(x_i)$ of dimension K + m.
- ▶ **Poststratification** : $U = \bigcup_{h=1}^{H} U_h$ and $s \subset U$ a SRSwr sample "stratified", $s = \bigcup_{h=1}^{H} s_h$ for m = 1 and knots at the strata bounds, we obtain the poststratified estimator $\hat{t}_{BS} = \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{s_h} y_k$;

We verify that \hat{t}_{BS} is (Särndal 1980, Särndal & Robinson 1982) :

 asymptotically design unbiased (ADU) and consistent (ADC) for t_y;

$$\lim_{N \to \infty} \frac{1}{N} E_{p}(\hat{t}_{BS} - t_{y}) = 0$$

$$\varepsilon > 0, \quad \lim_{N \to \infty} Pr(\frac{1}{N} \mid \hat{t}_{BS} - t_{y} \mid > \varepsilon) = 0$$

 robust (Godambe 1982) : the estimator reaches asymptotically the Godambe-Joshi lower bound (1965) :

$$E_{\xi}E_{
ho}(rac{1}{N}(\hat{t}_{BS}-t_y))^2\simeqrac{1}{N^2}\sum_U v(x_k)rac{1-\pi_k}{\pi_k}$$

イロト イポト イヨト イヨト 二日

Population :

$$\lim_{N \to \infty} \frac{n}{N} = \pi \in (0, 1).$$

$$\lim_{N \to \infty} \sup_{k \in U} \frac{1}{N} \sum_{k \in U} y_k^2 < \infty \text{ with } \xi \text{ probability } 1.$$

$$\sup_{z \in [0,1]} |Q_N(z) - Q(z)| = o(K^{-1}).$$

Sampling design : $\min_{k \in U} \pi_k \ge \lambda > 0, \min_{i,k \in U} \pi_{ik} \ge \lambda * > 0,$ $\overline{\lim_{N \to \infty} n} \max_{i \ne k \in U} |\pi_{ik} - \pi_i \pi_k| < \infty.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Result

Under the above assumptions and for K = o(N), $K = o(\sqrt{n})$:

$$N^{-1}E_p|\hat{t}_{BS}-\hat{t}_{HT}|=O(n^{-1/2})$$

for
$$\hat{t}_{HT} = \sum_{s} \frac{y_k}{\pi_k}$$
. It results then

•
$$\hat{t}_{BS}$$
 is ADU and ADC,

•
$$N^{-1}(\hat{t}_{BS} - \hat{t}_{HT}) = O_p(n^{-1/2}).$$

We have also,
$$N^{-1}(\hat{t}_{BS} - t_y) = O_p(n^{-1/2}).$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Asymptotic properties of \hat{t}_{BS} under the design p : the variance

Result

Under the above assumptions and for K = o(N), $K = o(\sqrt{n})$:

$$n^{1/2}N^{-1}(\hat{t}_{BS}-t_y)=n^{1/2}N^{-1}(\hat{t}_y-t_y)+o_p(1)$$

for

$$\hat{t}_y = \sum_s rac{y_k - \hat{f}_k}{\pi_k} + \sum_U \hat{f}_k$$

Consequence :

$$Var_p(rac{1}{N}(\hat{t}_{BS}-t_y))\simeq rac{1}{N^2}\sum_{k\in U}\sum_{i\in U}\Delta_{ki}rac{y_k-\hat{f}(z_k)}{\pi_k}rac{y_i-\hat{f}(z_i)}{\pi_i}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Population

•
$$\limsup_{N \to \infty} \frac{1}{N} \sum_{k \in U} \varepsilon_k^2 < \infty$$
 with ξ probability 1.

▶ the noise variance $v(\cdot)$ is bounded : $\sup_{k \in U} v(z_k) < \infty$.

Regularity of f : f is *m*-times continuously differentiable in [0, 1].

Asymptotic properties of \hat{t}_{BS} under the design p and the model ξ

Result

Under the above assumptions and for K = o(N), $K = o(n^{1/2})$

- \hat{t}_{BS} est asymptotically $p\xi$ -unbiased and
- ▶ t̂_{BS} is robust :

$$E_{\xi}E_{p}\left(\frac{1}{N}(\hat{t}_{BS}-t_{y})\right)^{2}=\frac{1}{N^{2}}\sum_{k\in U}v(z_{k})\frac{1-\pi_{k}}{\pi_{k}}+o(1)$$

• the anticipated variance is minimum for $\pi_k \propto \mathsf{v}(z_k)^{1/2}$

$$E_{\xi}E_{\rho}\left(\frac{1}{N}(\hat{t}_{BS}-t_{y})\right)^{2}\simeq\frac{1}{nN^{2}}\left[\left(\sum_{U}\sqrt{v(z_{k})}\right)^{2}-n\sum_{U}v(z_{k})\right]$$

イロト イポト イヨト イヨト 二日

A simulation study

- Population \mathcal{U} , N = 1000.
- ► $y_k = f(x_k) + \epsilon_k$, $\epsilon \sim N(0, \sigma)$ $x \in [0, 1]$, uniform distribution.
- ► 3 different functions f $f_{lin}(x) = 1 + 2(x - 0.5),$ $f_{exp}(x) = exp(-8x),$ $f_{sin}(x) = 2 + sin(2\pi x)$
- Simple random sampling without replacement of size n = 100, $\pi_k = n/N$.
- Splines with 5 interiors knots at the population quantile and m = 3.

MSE	f	τ _{HT}	<i>t_{GREG}</i>	\hat{t}_{BS}
	f _{lin}	2980	94	99
$\sigma = 0.1$	f_{exp}	513	281	100
	f _{sin}	4706	1835	102
$\sigma = 0.4$	f _{lin}	4504	1515	1633
	f _{exp}	1788	1638	1552
	f _{sin}	5476	3103	1565

- ▶ for f linear, \hat{t}_{BS} is almost apresque aussi bon que \hat{t}_{GREG} ;
- for f nonlinear, \hat{t}_{BS} has a better behaviour;
- *î*_{HT} conducts not very well;

 $MSE(\hat{\theta}) = \frac{1}{b} \sum_{r=1}^{b} (\hat{\theta}_r - \theta)^2$ for *b* simulations.

|→ 同 → → 目 → → 目 → ○ へ ()→

The estimation of the empirical distribution function and of quantiles in presence of auxiliary information

The empirical distribution function (edf)

$$F_{\mathbf{Y}}(t) = \frac{1}{N} \sum_{U} I_{\{y_k \le t\}}$$

and the α -th quantile :

$$q_{\alpha} = \inf\{t : F_{Y}(t) \ge \alpha\}$$

Method : we derive $\hat{F}_{Y}(t)$ and then $\hat{q}_{\alpha} = \inf\{t : \hat{F}_{Y}(t) \ge \alpha\}$ **Without auxiliary information and** N **known** : the Horvitz-Thompson estimator

$$\hat{F}_{HT,Y}(t) = (1/N) \sum_{s} rac{I_{\{y_k \leq t\}}}{\pi_k}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The estimation of the empirical distribution function using the B-splines approach

• Supposing that N is known, we propose (Aragon, Goga & Ruiz, 2005) the following estimator

$$\hat{F}_{BS}(t) = rac{1}{N} \sum_{s} w_{ks} I_{\{y_k \leq t\}}$$

with w_{ks} independent of $I_{\{y_k \leq t\}}$ and given by

$$w_{ks} = \frac{1}{\pi_k} \left(\sum_U \mathbf{b'}(z_k) \right) \left(\sum_{i \in s} \frac{\mathbf{b}(z_i)\mathbf{b'}(z_i)}{\pi_i} \right)^{-1} \mathbf{b}(z_k)$$

• If N is unknown, then $F_Y(t)$ is a nonlinear parameter.

- 4 回 ト 4 ヨ ト 4 ヨ ト

A simulation study

• The population U, N = 1000.

▶
$$y_k = f(x_k) + v^{1/2}(z_k)\epsilon_k$$
, $\epsilon \sim N(0, \sigma)$ and $\sigma = 0.2$
 $x \in [0, 1]$, the uniform distribution.

▶ 4 different functions
$$f$$
 (Breidt & Opsomer, 2000)
 $f_{lin}(x) = 1 + 2(x - 0.5),$
 $f_{exp}(x) = 0.6 + exp(-8x),$
 $f_{bump}(x) = 1.5 + 2(x - 0.5) + exp(-200(x - 0.5)^2)$
 $f_{jump}(x) = 1.5 + (O.35 + 2(x - 0.5)^2) I_{\{x \le 0.65\}}$

- Simple random sampling without replacement of size n = 100, $\pi_k = n/N$.
- Splines with 5 interiors knots at the population quantile and m = 3.

イロト イポト イヨト イヨト ニヨー わくや

MSE/MSE_{HT}	f	RKM _{ratio}	RA _{diff}	<i>BS</i> (3)	Postrat
	f _{lin}	.51	.39	.38	.40
q 25	f _{exp}	17.7	1	.97	.97
	f _{bump}	2.38	.38	.34	.38
	f _{jump}	21.4	.66	.56	.57
q 50	f _{lin}	.41	.37	.24	.25
	f _{exp}	8.02	.93	.83	.83
	f _{bump}	.66	.40	.20	.23
	f _{jump}	9.54	.87	.58	.60
q 75	f _{lin}	.38	.40	.31	.35
	f _{exp}	3.56	.96	.50	.52
	f _{bump}	2.72	.76	.59	.65
	f _{jump}	5.47	.98	.61	.62

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

The estimation of a nonlinear parameter of population totals with auxiliary information (in work with Anne Ruiz-Gazen)

Let us consider θ a nonlinear parameter. Linearization by the influence function approach

• Write $\theta = T(M)$ with T a homogeneous functional of degree α and $M = \sum_U \delta_{y_k}$;

• Use the estimator $\hat{ heta} = T(\hat{M})$ with

$$\hat{M} = \sum_{s} w_{ks} \delta_{y_k}$$

$$w_{ks} = \frac{1}{\pi_k} \left(\sum_U \mathbf{b'}(z_k) \right) \left(\sum_{i \in s} \frac{\mathbf{b}(z_i)\mathbf{b'}(z_i)}{\pi_i} \right)^{-1} \mathbf{b}(z_k)$$

Result

Let us consider the influence function defined as follows :

$$IT(M, y) = \lim_{\varepsilon \to \infty} \frac{T(M + \varepsilon \delta_y) - T(M)}{\varepsilon}.$$

Under broad assumptions we have

$$\begin{split} \sqrt{n}N^{-\alpha}(T(\hat{M}) - T(M)) &= \sqrt{n}N^{-\alpha}\int IT(M, y)d(\hat{M} - M) + o_p(1) \\ &= \sqrt{n}N^{-\alpha}(\sum_s w_{ks}u_k - \sum_U u_k) + o_p(1) \end{split}$$

with $u_k = IT(M, y_k)$ the linearized variables. **Example** : $F_Y(t) = \frac{1}{N} \sum_{U} I_{\{y_k < t\}}$ is estimated by

$$\hat{F}_{Y}(t) = \frac{\sum_{s} w_{ks} I_{\{y_{k} \leq t\}}}{\sum_{s} w_{ks}}.$$

Survey sampling and nonparametric models for taking into account

Consequence

$$\frac{\sqrt{n}}{N^{2\alpha}} \operatorname{Var}_{p}(T(\hat{M}) - T(M)) \simeq \frac{\sqrt{n}}{N^{2\alpha}} \operatorname{Var}_{p}(\sum_{s} w_{ks} u_{k} - \sum_{U} u_{k})$$
$$\simeq \frac{\sqrt{n}}{N^{2\alpha}} \sum_{k \in U} \sum_{i \in U} \Delta_{ki} \frac{u_{k} - \hat{f}(z_{k})}{\pi_{k}} \frac{u_{i} - \hat{f}(z_{i})}{\pi_{i}}$$

$$\widehat{f}_{\scriptscriptstyle U}(z_k) = \mathbf{b'}(z_k) (\mathbf{B'}_U \mathbf{B}_U)^{-1} \mathbf{B'}_U \mathbf{u}_U$$

★ロト ★課 と ★注 と ★注 と 一注

RB	f	τ _{ΗΤ}	\hat{t}_{BS}
	f _{exp}	-0.04	-0.0005
$\sigma = 0.2$	f _{lin}	-0.0016	-0.0009
	f _{sin}	0.0005	0.0001
$\sigma = 0.4$	f _{exp}	0.002	0.0005
	f _{lin}	0.0023	0.0002
	f _{sin}	0.0008	0.0001

pour
$$RB(\hat{\theta}) = \frac{E(\hat{\theta}) - \theta}{\theta}$$
 le biais relatif;

RMSE	f	τ _{ΗΤ}	τ̂ _{BS}
	f _{exp}	0.0016	0.0008
$\sigma = 0.2$	f _{lin}	0.0033	0.0003
	f _{sin}	0.0023	0.0002
$\sigma = 0.4$	f _{exp}	0.0039	0.0034
	f _{lin}	0.0045	0.0014
	f _{sin}	0.003	0.0008

pour $RMSE = \frac{MSE(\hat{\theta})}{\theta}$ l'erreur quadratique moyenne relative.

A simple method for taking into account the auxiliary information.

Further questions :

- 1. Choice of smoothing parameter K,
- 2. Extension to multivariate variable \mathcal{Z} .

イロン イヨン イヨン イヨン