The normal inverse Gaussian distribution: Exposition and applications

Dean Teneng, Institute of Mathematical Statistics, University of Tartu, Estonia.

ESF Grant No.8802 and Estonian Doctoral School in Mathematics and Statistics.
Talk outline

Why fit closing prices with distributions?
Specific NIG qualities.
Selecting best fit models
Analysis of data.
Applications.
The purpose of the study

• Purpose of the study is to model stock price distributions by Normal Inverse Gaussian distribution (NIG).

• NIG distributions form a 4-parameter density family.

• We consider stock prices (companies trading on Tallinn Stock Exchange: 01/01/2008 – 01/01/2012), world indexes (US data: 21/04/2004 – 29/12/2011) and exchange rates (UK data: 12/04/2008 – 07/08/2012)
Construction of NIG (1)

Consider a bivariate Brownian motion \((u_t, v_t)\) starting at point \((u, 0)\) and having constant drift vector \((\beta, \gamma)\) with \(\gamma > 0\) and let \(z\) denote the time at which \(v_t\) hits the line \(v = \delta > 0\) for the first time \((u_t, v_t)\) are assumed independent.

Then letting \(\alpha = \sqrt{\beta^2 + \gamma^2}\), the law of \(u_z\) is NIG\((\alpha, \beta, \delta, \mu)\)
Construction of NIG (2)

\(NIG(\alpha, \beta, \delta, \mu) \) distribution can be defined as a normal variance-mean mixture i.e. it can be presented as the marginal distribution of \(X \) in the pair \((X, Z)\), where the conditional probability \(X|Z \) is given by

\[
X|Z = z \sim N(\mu + \beta z, z)
\]

where (\(\sim \) means is distributed as) the variable \(Z (z > 0) \sim F_z \) and

\[
F_z = \Phi \left(\frac{1}{\sqrt{z}} \left[z \sqrt{\alpha^2 - \beta^2} - \delta \right] \right) + \exp \left\{ 2\delta \sqrt{\alpha^2 - \beta^2} \right\} \Phi \left(\frac{-1}{\sqrt{z}} \left[z \sqrt{\alpha^2 - \beta^2} + \delta \right] \right)
\]

with \(\Phi(z) \sim N(0, 1) \).

\(NIG(\alpha, \beta, \delta, \mu) \) distribution can also be constructed through the general hyperbolic class of distribution; in the special case where \(\lambda = -1/2 \). This distribution can be reduced to the Chi-square distribution.
NIG Distribution

PDF: \(f_{NIG}(x; \alpha, \beta, \delta, \mu) = \frac{\alpha \delta}{\pi} e^{\left(\delta (\alpha^2 - \beta^2)^{1/2} - \beta (x - \mu)\right)} \frac{K_1\left(\frac{\alpha (\delta^2 + (x - \mu)^2)^{1/2}}{(\delta^2 - (x - \mu)^2)^{1/2}}\right)}{(\delta^2 - (x - \mu)^2)^{1/2}} \)

where \(K_1(x) = \frac{\chi}{4} \int_0^\infty e^{(t + \frac{y^2}{4t})} t^{-2} dt \), \(\delta > 0 \) is scale parameter, \(\alpha > 0 \) is tail heaviness, \(\beta \geq 0 \) is symmetry parameter with condition \(-\alpha < \beta < \alpha\) and \(\mu \) is location parameter.

MGF: \(M(x; \alpha, \beta, \delta, \mu) = \exp\left[\delta \left\{\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + x)^2}\right\} + x\mu\right], \ x > 0 \)

- Mean = \(\mu + \frac{\delta \beta}{\sqrt{\alpha^2 - \beta^2}} \), \ Variance = \(\alpha^2 \delta (\alpha^2 - \beta^2)^{-3/2} \)
- Skewness = \(3\beta \alpha^{-1} \delta^{-1} (\alpha^2 - \beta^2)^{-1/4} \), \ Kurtosis = \(3\left(1 + \frac{\alpha^2 + 4\beta^2}{\delta \alpha^2 \sqrt{\alpha^2 - \beta^2}}\right) \)
More NIG useful characteristics

- If $X \sim NIG(\alpha, \beta, \delta, \mu)$, the $Y = kX \sim NIG(\alpha/k, \beta/k, \delta/k, \mu/k)$ - scaling

- $K_1(x) \sim \sqrt{\frac{\pi}{2x}} e^{-x}$, semi heavy-tail able to capture tails of distributions

- If $X_1 \sim NIG(\alpha, \beta, \delta_1, \mu_1)$ and $X_2 \sim NIG(\alpha, \beta, \delta_2, \mu_2)$ are independent, then $Y = X_1 + X_2 \sim NIG(\alpha, \beta, \delta_1 + \delta_2, \mu_1 + \mu_2)$

or

if $x_1, x_2, x_3, \ldots, x_m$ are independent normal inverse Gaussian random numbers with common parameters α, β but having individual location and scale parameters u_i and $\delta_i (i = 1, \ldots, m)$, then $x_+ = x_1 + \cdots + x_m$ is again distributed according to a normal inverse Gaussian law, with parameters $(\alpha, \beta, \delta_+, u_+)$
NIG density for negative, zero and positive beta: Other parameters held constant
NIG density for alpha=10, 5 and 1: Other parameters held constant
Method for selecting best models

1. choose a suitable class of distributions (using general or prior information about the specific data) ;
2. estimate the parameters (by finding maximum likelihoods);
3. estimate goodness of fit;
 • a) visual estimation,
 • b) classical goodness-of-fit tests (Kolmogorov-Smirnov, Chi-squared with equiprobable classes),
 • c) probability or quantile-quantile plots.
1) Visual estimation: Estonian companies

(Data from Tallinn Stock Exchange: 01/01/2008 – 01/01/2012)
Estimated NIG parameters, skews, kurtoses, Kolmogorov-Smirnov (K-S) and Chi-square (χ^2) test results for Estonian companies
(Data from Tallinn Stock Exchange: 01/01/2008 – 01/01/2012)

<table>
<thead>
<tr>
<th>Company</th>
<th>Alpha</th>
<th>Beta</th>
<th>Delta</th>
<th>mu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arco Vara</td>
<td>468.90</td>
<td>468.86</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Baltika</td>
<td>7.06</td>
<td>6.62</td>
<td>0.22</td>
<td>0.52</td>
</tr>
<tr>
<td>Ekpress Grupp</td>
<td>2.68</td>
<td>2.15</td>
<td>0.49</td>
<td>0.85</td>
</tr>
<tr>
<td>Harju Elekter</td>
<td>3.20</td>
<td>-2.07</td>
<td>0.72</td>
<td>2.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>χ^2 statistic</th>
<th>χ^2 p-value</th>
<th>K-S D-value</th>
<th>K-S p-value</th>
<th>Skew</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arco Vara</td>
<td>2251.60</td>
<td>$P < 0.00001$</td>
<td>0.23</td>
<td>$p < 0.00001$</td>
<td>0.38</td>
<td>-1.53</td>
</tr>
<tr>
<td>Baltika</td>
<td>1771.12</td>
<td>$P < 0.00001$</td>
<td>0.06</td>
<td>$p = 0.05723$</td>
<td>1.67</td>
<td>2.33</td>
</tr>
<tr>
<td>Ekpress Grupp</td>
<td>1194.24</td>
<td>$P < 0.00001$</td>
<td>0.07</td>
<td>$P = 0.01198$</td>
<td>1.70</td>
<td>2.53</td>
</tr>
<tr>
<td>Harju Elekter</td>
<td>1345.87</td>
<td>$P < 0.00001$</td>
<td>0.09</td>
<td>$p = 0.00027$</td>
<td>-0.82</td>
<td>-0.05</td>
</tr>
</tbody>
</table>
2) Visual estimation: World indexes
(Data obtained from US: 21/04/2004 – 29/12/2011)
Estimated NIG parameters, skews, kurtoses, Kolmogorov-Smirnov (K-S) and Chi-square (χ^2) test results for world indexes (Data obtained from US: 21/04/2004 – 29/12/2011)

<table>
<thead>
<tr>
<th>World Index</th>
<th>Alpha</th>
<th>Beta</th>
<th>Delta</th>
<th>Mu</th>
<th>Skew</th>
<th>Kurtosis</th>
<th>K-S p-value</th>
<th>K-S D-value</th>
<th>χ^2 Statistic</th>
<th>χ^2 p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSPC</td>
<td>0.04</td>
<td>-0.03</td>
<td>514.04</td>
<td>1667.66</td>
<td>-0.05</td>
<td>0.12</td>
<td>P=0.016</td>
<td>0.015</td>
<td>36.49</td>
<td>1</td>
</tr>
<tr>
<td>OMXSPI</td>
<td>0.93</td>
<td>-0.70</td>
<td>870.55</td>
<td>1311.78</td>
<td>-0.06</td>
<td>-0.76</td>
<td>P=0.002</td>
<td>0.06</td>
<td>122.57</td>
<td>1</td>
</tr>
<tr>
<td>FTSE100</td>
<td>0.03</td>
<td>-0.028</td>
<td>1195.17</td>
<td>7947.69</td>
<td>-3.92</td>
<td>-5.5</td>
<td>P=0.097</td>
<td>0.04</td>
<td>82.62</td>
<td>1</td>
</tr>
<tr>
<td>STI</td>
<td>0.93</td>
<td>-0.7</td>
<td>870.55</td>
<td>1311.78</td>
<td>-0.06</td>
<td>-0.76</td>
<td>P=0.001</td>
<td>0.053</td>
<td>122.57</td>
<td>1</td>
</tr>
</tbody>
</table>
3) Visual estimation: Exchange rates
(Data obtained from UK: 12/04/2008 – 07/08/2012)
3) Visual estimation: Exchange rates
(Data obtained from UK: 12/04/2008 – 07/08/2012)
3) Visual estimation: Exchange rates
(Data obtained from UK: 12/04/2008 – 07/08/2012)
Estimated NIG parameters, skews, kurtoses, Kolmogorov-Smirnov (K-S) and Chi-square (χ^2) test results for NIG FX models (Data obtained from UK: 12/04/2008 – 07/08/2012)

<table>
<thead>
<tr>
<th>FX</th>
<th>Alpha</th>
<th>Beta</th>
<th>Delta</th>
<th>Mu</th>
<th>Skew</th>
<th>Kurtosis</th>
<th>KS p-value</th>
<th>KS D-value</th>
<th>CS P-value</th>
<th>CS stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD/JPY</td>
<td>0.33</td>
<td>-0.23</td>
<td>5.07</td>
<td>84.3</td>
<td>-1.53</td>
<td>2.49</td>
<td>0.4</td>
<td>0.04</td>
<td>1</td>
<td>158.1</td>
</tr>
<tr>
<td>CHF/JPY</td>
<td>0.54</td>
<td>0.26</td>
<td>7.31</td>
<td>82.41</td>
<td>0.76</td>
<td>1.16</td>
<td>0.22</td>
<td>0.047</td>
<td>1</td>
<td>169.28</td>
</tr>
<tr>
<td>EGP/EUR</td>
<td>18215.6</td>
<td>18011.2</td>
<td>0.004</td>
<td>0.1</td>
<td>0.38</td>
<td>-0.76</td>
<td>0.062</td>
<td>0.059</td>
<td>0.01</td>
<td>350.14</td>
</tr>
<tr>
<td>EUR/GBP</td>
<td>2194.25</td>
<td>-412.12</td>
<td>2.41</td>
<td>1.32</td>
<td>-0.01</td>
<td>-0.07</td>
<td>0.08</td>
<td>0.057</td>
<td>1</td>
<td>227.74</td>
</tr>
<tr>
<td>GBP/JPY</td>
<td>8.43</td>
<td>8.31</td>
<td>4.32</td>
<td>108.3</td>
<td>0.65</td>
<td>-0.3</td>
<td>0.12</td>
<td>0.054</td>
<td>1</td>
<td>100.5</td>
</tr>
<tr>
<td>NZD/USD</td>
<td>354.97</td>
<td>-342.22</td>
<td>0.048</td>
<td>0.91</td>
<td>-0.98</td>
<td>0.44</td>
<td>0.24</td>
<td>0.046</td>
<td>1</td>
<td>103.31</td>
</tr>
<tr>
<td>QAR/CHF</td>
<td>2152.2</td>
<td>-2092.4</td>
<td>0.02</td>
<td>0.37</td>
<td>-0.77</td>
<td>0.29</td>
<td>0.12</td>
<td>0.053</td>
<td>1</td>
<td>304.05</td>
</tr>
<tr>
<td>QAR/EUR</td>
<td>1364.5</td>
<td>1022.2</td>
<td>0.07</td>
<td>0.12</td>
<td>0.19</td>
<td>-0.6</td>
<td>0.37</td>
<td>0.041</td>
<td>0.963</td>
<td>359.56</td>
</tr>
<tr>
<td>SAR/CHF</td>
<td>2656.5</td>
<td>-2594.4</td>
<td>0.02</td>
<td>0.36</td>
<td>-0.77</td>
<td>0.28</td>
<td>0.16</td>
<td>0.05</td>
<td>1</td>
<td>329.36</td>
</tr>
<tr>
<td>SAR/EUR</td>
<td>2702.86</td>
<td>2331.53</td>
<td>0.054</td>
<td>0.099</td>
<td>0.19</td>
<td>-0.6</td>
<td>0.16</td>
<td>0.05</td>
<td>0.92</td>
<td>359</td>
</tr>
<tr>
<td>TND/CHF</td>
<td>1088.3</td>
<td>-1065.6</td>
<td>0.047</td>
<td>0.99</td>
<td>-0.76</td>
<td>0.28</td>
<td>0.341</td>
<td>0.042</td>
<td>1</td>
<td>169.02</td>
</tr>
<tr>
<td>TND/EUR</td>
<td>1014.79</td>
<td>878.64</td>
<td>0.153</td>
<td>0.27</td>
<td>0.18</td>
<td>-0.6</td>
<td>0.341</td>
<td>0.042</td>
<td>1</td>
<td>254.9</td>
</tr>
</tbody>
</table>
Observations...

Daily closing prices (12/04/2008 – 07/08/2012) of AUD/JPY, CHF/JPY, GBP/JPY, NZD/USD, QAR/CHF, SAR/CHF, SAR/EUR, TND/CHF, TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively.

Impossible to estimate NIG parameters (by maximum likelihood) for JPY/CHF but CHF/JPY was an excellent fit.

Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around.
Major conclusions

• The distribution of closing prices of stocks, world indexes and exchange rates can be modeled with the normal inverse Gaussian distribution; despite different time horizons

• Modeling the distribution of an exchange rate in one direction does not mean it can be modeled in the other direction

N/B: Chi-square test results depend on how intervals are chosen, number of variables etc and can basically be ignored in our study.
References

- Teneng, D.: Modeling foreign exchange closing prices with normal inverse Gaussian distribution. (Submitted)
Thank you for listening

ESF Grant No.8802 and Estonian Doctoral School in Mathematics and Statistics.