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What is surplus and how does it arise?

Life insurers enter long-term contracts with guaranteed benefits, in return

policyholders make fixed premium payments

The uncertain development of economic and demographic factors

represents an undiversifiable risk

Contracts include safety-loadings leading to systematic surplus

National laws specify minimum repayment percentages for the individual

sources of surplus

▶ Decomposition of surplus into its individual risk contributions is

indispensable

▶ Overarching decomposition principle is missing
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The surplus process of an individual insurance contract

Time horizon [0,T ]

Risk basis X = (X1, ...,Xm) adapted process

Total discounted surplus R(t) at time t

Stopped processes X t
i , defined by X t

i (s) = 1s≤t Xi (s) + 1s>t Xi (t)

We assume a mapping ϱ such that

ϱ(X t) = ϱ((X t
1 , ...,X

t
m)) = R(t), t ≥ 0

Goal: Find adapted processes D1,. . . , Dm that start at zero with

R(t)− R(0) = D1(t) + · · ·+ Dm(t)
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The SU Decomposition

We abbreviate

U(t1, . . . , tm) := ϱ((X t1
1 , . . . ,X tm

m )).

For any partition T = {0 = t0 < t1 < · · · < tk = t} of [0, t] we have

R(t)− R(0) = U(t, . . . , t)− U(0, . . . , 0)

=
∑

tl ,tl+1∈T

(
U(tl+1, . . . , tl+1)− U(tl , . . . , tl)

)
=

∑
tl ,tl+1∈T

(
U(tl+1, tl , . . . , tl)− U(tl , . . . , tl)

)
+

∑
tl ,tl+1∈T

(
U(tl+1, tl+1, tl , . . . , tl)− U(tl+1, tl , . . . , tl)

)
+ · · ·

+
∑

tl ,tl+1∈T

(
U(tl+1, . . . , tl+1)− U(tl+1, . . . , tl+1, tl)

)
.
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The SU Decomposition (cont.)

The random vector D(t) = (D1(t), . . . ,Dm(t)) defined by

D1(t) =
∑

tl ,tl+1∈T

(
U(tl+1, tl , . . . , tl)− U(tl , . . . , tl)

)
,

· · ·

Dm(t) =
∑

tl ,tl+1∈T

(
U(tl+1, . . . , tl+1)− U(tl+1, . . . , tl+1, tl)

)
,

is called the SU (sequential updating) decomposition of R(t) = ϱ(X t) with

respect to T .

▶ SU decomposition is used in various fields of economics

(cf. Fortin et al., 2011 and Biewen, 2014)

Drawback: Decomposition is not invariant with respect to the update order!

▶ Transition to a sequence of partitions with vanishing step lengths
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The ISU Decomposition

(Tn)n sequence of partitions on [0, t] with limn→∞maxl |tnl − tnl−1| = 0

Dn(t) = (Dn
1 (t), . . . ,D

n
m(t)) SU decomposition of R(t) = ϱ(X t) with

respect to Tn(t)

The random vector D(t) = (D1(t), . . . ,Dm(t)) that satisfies

Di (t) = plim
n→∞

Dn
i (t)

is called ISU (infinitesimal sequential updating) decomposition of

R(t) = ϱ(X t) with respect to (Tn)n.
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Life insurance setup

Z jump process with finite state space Z describing state of insured

N = (Njk)jk corresponding counting processes

(Φ,Λ) valuation basis consisting of cumulative interest intensity Φ and

cumulative transition intensities Λ = (Λjk)jk

Fixed deterministic first-order basis (Φ∗,Λ∗) under prudent probability

measure P∗

Fixed stochastic second-order basis (Φ,Λ) under experienced probability

measure P

Insurance cash flow B with

dB(t) =
∑
j

Ij(t−)dBj(t) +
∑

jk:j ̸=k

bjk(t)dNjk(t)
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Individual surplus (cf. Norberg, 1999)

R(t) = −
∫
[0,t]

1

κ(s)
dB(s)−

∑
j

1

κ(t)
Ij(t)V

∗
j (t),

where

E∗
[∫ T

t

κ∗(t)

κ∗(s)
dB(s)

∣∣∣∣Z (t) = j

]
and dκ(t) = κ(t−)dΦ(t), κ(0) = 1.

Proposition: It holds

R(t) = −H((Φ∗,Λ∗) + (Φ− Φ∗,N − Λ∗)t),

where for any valuation basis (Φ,Λ) the mapping H is defined by

H((Φ,Λ)) :=
∑
j

∫
[0,T ]

1

κ(s)
paj(0, s−)dBj(s)

+
∑

j ,k:j ̸=k

∫
(0,T ]

1

κ(s)
paj(0, s−)bjk(s)dΛjk(s)
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and dκ(t) = κ(t−)dΦ(t), κ(0) = 1.

Proposition: It holds

R(t) = −H((Φ∗,Λ∗) + (Φ− Φ∗,N − Λ∗)t),

where for any valuation basis (Φ,Λ) the mapping H is defined by

H((Φ,Λ)) :=
∑
j

∫
[0,T ]
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κ(s)
paj(0, s−)dBj(s)
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Individual surplus - ISU decomposition

Different choices of risk basis X and mapping ϱ are conceivable, e.g.

1) X = (XΦ,Xu,Xs) = (Φ− Φ∗,N − Λ,Λ− Λ∗)

2) X = (Xu, (Xj)j) = (Xu, (Xj ,1,Xj ,2)j) = (N − Λ, (Φj − Φ∗
j ,Λj − Λ∗

j )j)

where dΦj(t) = Ij(t−)dΦ(t), Φj(0) = 0 and Λj = (Λjk)k:k ̸=j

with corresponding mappings ϱ based on the previous proposition

1) ϱ(X t) = −H
(
(Φ∗,Λ∗) + (X t

Φ,X
t
u + X t

s )
)

2) ϱ(X t) = −H
(
(Φ∗,Λ∗) + (0,X t

u) +
(∑

j X
t
j ,1, (X

t
j ,2)j

))
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Individual surplus - ISU decomposition (cont.)

In case 2), we obtain the ISU decomposition

Du(t) = −
∑
jk:j ̸=k

∫
(0,t]

1

κ(s)
Ij(s−)R∗

jk(s)d(Njk − Λjk)(s),

Dj(t) =

∫
(0,t]

1

κ(s−)
Ij(s−)

(
V ∗
j (s−)d(Φ̃− Φ∗)(s)−

∑
k:k ̸=j

R∗
jk(s)d(Λjk − Λ∗

jk)(s)
)
, j ∈ Z.

where Φ̃(t) = Φ(t)− [Φ,Φ]c(t)−
∑

0<s≤t(1 + ∆Φ(s))−1(∆Φ(s))2.

As a special case, the ISU decomposition includes heuristic approaches of

Ramlau-Hansen (1988) and Norberg (1999).

Splitting the financial risk into an unsystematic and a systematic part, one

can replicate the surplus formula of Asmussen & Steffensen (2020).
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Further results

The mean portfolio (revaluation) surplus is given by (cf. Norberg, 1999)

R(t) = E
[
−
∫
[0,t]

1

κ(s)
dB(s)−

∑
j

1

κ(t)
Ij(t)V

∗
j (t)

∣∣∣∣Φ,Λ],
and ϱ can be obtained from adding E[·|Φ,Λ] to the corresponding ϱ in the

individual perspective.

ISU decomposition yields again traditional decomposition formulas by

Ramlau-Hansen (1991) and Norberg (1999).
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Conclusion

The ISU decomposition principle unites the various surplus

decomposition formulas in literature under one banner

The ISU Decomposition Principle allows for an easy addition of further

risks (e.g. behavior-based risks)

The ISU concept can be useful beyond life insurance, whenever profits

and losses of an financial entity shall be decomposed

THANK YOU FOR YOUR ATTENTION!
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Alternative decomposition principles - One-at-a-time

The random vector D(t) = (D1(t), . . . ,Dm(t),D(t)) defined by

D1(t) =
∑

tl ,tl+1∈T

(
U(tl+1, tl , . . . , tl)− U(tl , tl , . . . , tl)

)
,

· · ·

Dm(t) =
∑

tl ,tl+1∈T

(
U(tl , . . . , tl , tl+1)− U(tl , . . . , tl)

)
,

D(t) = R(t)− R(0)−
m∑
j=1

Dj(t)

is called the OAT (one-at-a-time) decomposition of R(t)− R(0) w.r.t. T .

(cf. Biewen, 2014)

Drawback: ”Joint risk factor” cannot be assigned to any source of risk

▶ Transition to a sequence of partitions with vanishing step lengths

(IOAT decomposition)
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Alternative decomposition principles - averaged ISU

The random vector D(t) = (D1(t), . . . ,Dm(t)) defined by

D1(t) =
1

m!

∑
π∈σm

Dπ
π(1)(t),

· · ·

Dm(t) =
1

m!

∑
π∈σm

Dπ
π(m)(t),

is called the averaged ISU decomposition of R(t)− R(0) w.r.t. (Tn(t))n.
(cf. Shorrocks, 2013)

Theorem: If the ISU decomposition is independent of update order, then

ISU (for each update order), IOAT and averaged ISU yield the same

decomposition.
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